Many decisions under uncertainty entail the temporal accumulation of evidence that informs about the state of the environment. When environments are subject to hidden changes in their state, maximizing accuracy and reward requires non-linear accumulation of the evidence. How this adaptive, non-linear computation is realized in the brain is unknown. We analyzed human behavior and cortical population activity (measured with magnetoencephalography) recorded during visual evidence accumulation in a changing environment. Behavior and decisionrelated activity in cortical regions involved in action planning exhibited hallmarks of adaptive evidence accumulation, which could also be implemented by a recurrent cortical microcircuit. Decision dynamics in action-encoding parietal and frontal regions were mirrored in a frequency-specific modulation of the state of visual cortex that depended on pupil-linked arousal and the expected probability of change. These findings link normative decision computations to recurrent cortical circuit dynamics and highlight the adaptive nature of decision-related feedback to sensory cortex..
Models of fixation selection are a central tool in the quest to understand how the human mind selects relevant information. Using this tool in the evaluation of competing claims often requires comparing different models' relative performance in predicting eye movements. However, studies use a wide variety of performance measures with markedly different properties, which makes a comparison difficult. We make three main contributions to this line of research: First we argue for a set of desirable properties, review commonly used measures, and conclude that no single measure unites all desirable properties. However the area under the ROC curve (a classification measure) and the KL-divergence (a distance measure of probability distributions) combine many desirable properties and allow a meaningful comparison of critical model performance. We give an analytical proof of the linearity of the ROC measure with respect to averaging over subjects and demonstrate an appropriate correction of entropy-based measures like KL-divergence for small sample sizes in the context of eye-tracking data. Second, we provide a lower bound and an upper bound of these measures, based on image-independent properties of fixation data and between subject consistency respectively. Based on these bounds it is possible to give a reference frame to judge the predictive power of a model of fixation selection . We provide open-source python code to compute the reference frame. Third, we show that the upper, between subject consistency bound holds only for models that predict averages of subject populations. Departing from this we show that incorporating subject-specific viewing behavior can generate predictions which surpass that upper bound. Taken together, these findings lay out the required information that allow a well-founded judgment of the quality of any model of fixation selection and should therefore be reported when a new model is introduced.
The interest in saccadic IOR is funneled by the hypothesis that it serves a clear functional purpose in the selection of fixation points: the facilitation of foraging. In this study, we arrive at a different interpretation of saccadic IOR. First, we find that return saccades are performed much more often than expected from the statistical properties of saccades and saccade pairs. Second, we find that fixation durations before a saccade are modulated by the relative angle of the saccade, but return saccades show no sign of an additional temporal inhibition. Thus, we do not find temporal saccadic inhibition of return. Interestingly, we find that return locations are more salient, according to empirically measured saliency (locations that are fixated by many observers) as well as stimulus dependent saliency (defined by image features), than regular fixation locations. These results and the finding that return saccades increase the match of individual trajectories with a grand total priority map evidences the return saccades being part of a fixation selection strategy that trades off exploration and exploitation.
Perceptual decisions entail the accumulation of sensory evidence for a particular choice towards an action plan. An influential framework holds that sensory cortical areas encode the instantaneous sensory evidence and downstream, action-related regions accumulate this evidence. The large-scale distribution of this computation across the cerebral cortex has remained largely elusive. Here, we develop a regionally-specific magnetoencephalography decoding approach to exhaustively map the dynamics of stimulus- and choice-specific signals across the human cortical surface during a visual decision. Comparison with the evidence accumulation dynamics inferred from behavior disentangles stimulus-dependent and endogenous components of choice-predictive activity across the visual cortical hierarchy. We find such an endogenous component in early visual cortex (including V1), which is expressed in a low (<20 Hz) frequency band and tracks, with delay, the build-up of choice-predictive activity in (pre-) motor regions. Our results are consistent with choice- and frequency-specific cortical feedback signaling during decision formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.