Models of fixation selection are a central tool in the quest to understand how the human mind selects relevant information. Using this tool in the evaluation of competing claims often requires comparing different models' relative performance in predicting eye movements. However, studies use a wide variety of performance measures with markedly different properties, which makes a comparison difficult. We make three main contributions to this line of research: First we argue for a set of desirable properties, review commonly used measures, and conclude that no single measure unites all desirable properties. However the area under the ROC curve (a classification measure) and the KL-divergence (a distance measure of probability distributions) combine many desirable properties and allow a meaningful comparison of critical model performance. We give an analytical proof of the linearity of the ROC measure with respect to averaging over subjects and demonstrate an appropriate correction of entropy-based measures like KL-divergence for small sample sizes in the context of eye-tracking data. Second, we provide a lower bound and an upper bound of these measures, based on image-independent properties of fixation data and between subject consistency respectively. Based on these bounds it is possible to give a reference frame to judge the predictive power of a model of fixation selection . We provide open-source python code to compute the reference frame. Third, we show that the upper, between subject consistency bound holds only for models that predict averages of subject populations. Departing from this we show that incorporating subject-specific viewing behavior can generate predictions which surpass that upper bound. Taken together, these findings lay out the required information that allow a well-founded judgment of the quality of any model of fixation selection and should therefore be reported when a new model is introduced.
Different tasks can induce different viewing behavior, yet it is still an open question how or whether at all high-level task information interacts with the bottom-up processing of stimulus-related information. Two possible causal routes are considered in this paper. Firstly, the weak top-down hypothesis, according to which top-down effects are mediated by changes of feature weights in the bottom-up system. Secondly, the strong top-down hypothesis, which proposes that top-down information acts independently of the bottom-up process. To clarify the influences of these different routes, viewing behavior was recorded on web pages for three different tasks: free viewing, content awareness, and information search. The data reveal significant task-dependent differences in viewing behavior that are accompanied by minor changes in feature-fixation correlations. Extensive computational modeling shows that these small but significant changes are insufficient to explain the observed differences in viewing behavior. Collectively, the results show that task-dependent differences in the current setting are not mediated by a reweighting of features in the bottom-up hierarchy, ruling out the weak top-down hypothesis. Consequently, the strong top-down hypothesis is the most viable explanation for the observed data.
Spatial filtering models are currently a widely accepted mechanistic account of human lightness perception. Their popularity can be ascribed to two reasons: They correctly predict how human observers perceive a variety of lightness illusions, and the processing steps involved in the models bear an apparent resemblance with known physiological mechanisms at early stages of visual processing. Here, we tested the adequacy of these models by probing their response to stimuli that have been modified by adding narrowband noise. Psychophysically, it has been shown that noise in the range of one to five cycles per degree (cpd) can drastically reduce the strength of some lightness phenomena, while noise outside this range has little or no effect on perceived lightness. Choosing White's illusion (White, 1979) as a test case, we replicated and extended the psychophysical results, and found that none of the spatial filtering models tested was able to reproduce the spatial frequency specific effect of narrowband noise. We discuss the reasons for failure for each model individually, but we argue that the failure is indicative of the general inadequacy of this class of spatial filtering models. Given the present evidence we do not believe that spatial filtering models capture the mechanisms that are responsible for producing many of the lightness phenomena observed in human perception. Instead we think that our findings support the idea that low-level contributions to perceived lightness are primarily determined by the luminance contrast at surface boundaries.
Recent research indicates a direct relationship between low-level color features and visual attention under natural conditions. However, the design of these studies allows only correlational observations and no inference about mechanisms. Here we go a step further to examine the nature of the influence of color features on overt attention in an environment in which trichromatic color vision is advantageous. We recorded eye-movements of color-normal and deuteranope human participants freely viewing original and modified rainforest images. Eliminating red–green color information dramatically alters fixation behavior in color-normal participants. Changes in feature correlations and variability over subjects and conditions provide evidence for a causal effect of red–green color-contrast. The effects of blue–yellow contrast are much smaller. However, globally rotating hue in color space in these images reveals a mechanism analyzing color-contrast invariant of a specific axis in color space. Surprisingly, in deuteranope participants we find significantly elevated red–green contrast at fixation points, comparable to color-normal participants. Temporal analysis indicates that this is due to compensatory mechanisms acting on a slower time scale. Taken together, our results suggest that under natural conditions red–green color information contributes to overt attention at a low-level (bottom-up). Nevertheless, the results of the image modifications and deuteranope participants indicate that evaluation of color information is done in a hue-invariant fashion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.