Li-ion batteries are commonly used in portable electronic devices due to their outstanding energy and power density. A remaining issue which hinders the breakthrough e.g. in the automotive sector is the high production cost. For low power applications, such as stationary storage, batteries with electrodes thicker than 300 µm were suggested. High energy densities can be attained with only a few electrode layers which reduces production time and cost. However, mass and charge transport limitations can be severe at already small Crates due to long transport pathways. In this article we use a detailed 3D micro-structure resolved model to investigate limiting factors for battery performance. The model is parametrized with data from the literature and dedicated experiments and shows good qualitative agreement with experimental discharge curves of thick NMC-graphite Li-ion batteries. The model is used to assess the effect of inhomogeneities in carbon black distribution and gives answers to the possible occurrence of lithium plating during battery charge. Based on our simulations we can predict optimal operation strategies and improved design concepts for future Li-ion batteries employing thick electrodes.
Most cathode materials for lithium-ion batteries exhibit a low electronic conductivity. Hence, a significant amount of conductive graphitic additives are introduced during electrode production. The mechanical stability and electronic connection of the electrode is enhanced by a mixed phase formed by the carbon and binder materials. However, this mixed phase, the carbon binder domain (CBD), hinders the transport of lithium ions through the electrolyte pore network. Thus, reducing the performance at higher currents. In this work we combine microstructure resolved simulations with impedance measurements on symmetrical cells to identify the influence of the CBD distribution. Microstructures of NMC622 electrodes are obtained through synchrotron X-ray tomography. Resolving the CBD using tomography techniques is challenging. Therefore, three different CBD distributions are incorporated via a structure generator. We present results of microstructure resolved impedance spectroscopy and lithiation simulations, which reproduce the experimental results of impedance spectroscopy and galvanostatic lithiation measurements, thus, providing a link between the spatial CBD distribution, electrode impedance, and half-cell performance. The results demonstrate the significance of the CBD distribution and enable predictive simulations for battery design. The accumulation of CBD at contact points between particles is identified as the most likely configuration in the electrodes under consideration.
The effect of the mixing and drying process on the microstructure of ultra‐thick NCM 622 cathodes (50 mg cm−2, 8 mAh cm−2) and its implication for battery performance is investigated. It is observed that the shear force during the mixing process significantly influences the resulting microstructure with regard to binder migration during the drying process. Based on the information extracted from scanning electron microscopy–energy dispersive X‐ray spectroscopy (SEM–EDX) cross sections, the carbon binder domain (CBD) is distributed in the pore space of virtual electrodes generated by a stochastic 3D microstructure model. Simulations predict a CBD configuration that leads to optimal performance of the electrode. Furthermore, it is shown that a low drying rate has a beneficial influence toward the rate capability of the ultra‐thick cathodes. The specific energy of an ultra‐thick cathode is 18% higher compared with a cathode prepared according to the state of the art. With an improved process in a pilot scale, the advantage can be kept up to current densities of at least 3 mA cm−².
On of the major degradation processes in lithium ion batteries is the deposition of metallic lithium on the surface of the active particles in the negative electrode. In this paper we present a fully 3D microstructure resolved simulation of the influence of plated lithium on the cell potential during discharge depending on the amount and position of plated lithium. Our simulations give insight on the most probable position of the first occurrence of plating within the electrode depending on applied current and ambient temperatures as well as on the subtle local electric current distributions during stripping of plated lithium upon discharge. Specifically a stripping induced intercalation of lithium ions in the supporting graphite material during discharge is discovered. This phenomenon, easily accessible to microstructure resolved simulations, leads to a violation of the relation between transferred charge during stripping and the amount of plated lithium. As a consequence the amount of plated lithium cannot be uniquely determined from the applied current and the length of the potential plateau during stripping. We show that the value and length of the plateau depends on the amount of plated lithium, the fraction of the surface area covered by lithium and the applied current.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.