The flow at the combustor turbine interface of power generation gas turbines with can combustors is characterized by high and nonuniform turbulence levels, lengthscales, and residual swirl. These complexities have a significant impact on the first vanes aerothermal performance and lead to challenges for an effective turbine design. To date, this design philosophy mostly assumed steady flow and thus largely disregards the intrinsic unsteadiness. This paper investigates the steady and unsteady effects of the combustor flow with swirl on the turbines first vanes. Experimental measurements are conducted on a high-speed linear cascade that comprises two can combustors and four nozzle guide vanes (NGVs). The experimental results are supported by a large eddy simulation (LES) performed with the inhouse computational fluid dynamics (CFD) flow solver TBLOCK. The study reveals the highly unsteady nature of the flow in the first vane and its effect on the heat transfer. A persistent flow structure of concentrated vorticity is observed. It wraps around the unshielded vane's leading edge (LE) at midspan and periodically oscillates in spanwise direction due to the interaction of the residual low-pressure swirl core and the vane's potential field. Moreover, the transient behavior of the horseshoe-vortex system due to large fluctuations in incidence is demonstrated.
The flow at the combustor turbine interface of power generation gas turbines with can combustors is characterized by high and non-uniform turbulence levels, lengthscales and residual swirl. These complexities have a significant impact on the first vanes aerothermal performance and lead to challenges for an effective turbine design. To date, this design philosophy mostly assumed steady flow and thus largely disregards the intrinsic unsteadiness. This paper investigates the steady and unsteady effects of the combustor flow with swirl on the turbines first vanes. Experimental measurements are conducted on a high-speed linear cascade that comprises two can combustors and four nozzle guide vanes. The experimental results are supported by a Large Eddy Simulation performed with the inhouse CFD flow solver TBLOCK. The study reveals the highly unsteady nature of the flow in the first vane and its effect on the heat transfer. A persistent flow structure of concentrated vorticity is observed. It wraps around the unshielded vane’s leading edge at midspan and periodically oscillates in spanwise direction due to the interaction of the residual low-pressure swirl core and the vane’s potential field. Moreover, the transient behavior of the horseshoe-vortex system due to large fluctuations in incidence is demonstrated.
The integrated combustor vane concept for power generation gas turbines with can combustors has been shown to have significant benefits compared to conventional nozzle guide vanes. Aerodynamic loss, heat transfer levels and cooling requirements are reduced while stage efficiency is improved by approximately 1.5% (for a no-swirl scenario). Engine realistic combustor flow with swirl however leads to increased turning non-uniformity downstream of the integrated vanes. This paper thus illustrates the altered integrated vane stage performance caused by inlet swirl. The study shows a distinct performance penalty for the integrated vane rotor as a result of increased rotor incidence and the rotor’s interaction with the residual swirl core. The stage efficiency advantage of the integrated combustor vane concept compared to the conventional design is thus reduced to 0.7%. It is furthermore illustrated how integrated vane profiling is suitable to reduce the turning variation across the span downstream of the vane, further improve stage efficiency (in this case by 0.23%) and thus mitigate the distinct impact of inlet swirl on integrated vane stage performance.
This paper presents a thermal investigation of the integrated combustor vane concept for power generation gas turbines with individual can combustors. This concept has the potential to replace the high-pressure turbine’s first vanes by prolonged combustor walls. Experimental measurements are performed on a linear high-speed cascade consisting of two can combustors and two integrated vanes. The modularity of the facility allows for the testing at engine-realistic high turbulence levels, as well as swirl strengths with opposing swirl directions. The heat transfer characteristics of the integrated vanes are compared to conventional nozzle guide vanes. The experimental measurements are supported by detailed numerical simulations using the in-house computational fluid dynamics (CFD) code TBLOCK. Experimental as well as numerical results congruently indicate a considerable reduction of the heat transfer coefficient (HTC) on the integrated vanes surfaces and endwalls caused by a differing state of boundary layer thickness. The studies furthermore depict a slight, nondetrimental shift in the heat transfer coefficient distributions and the strength of the integrated vanes secondary flows as a result of engine-realistic combustor swirl.
The integrated combustor vane concept for power generation gas turbines with can combustors has been shown to have significant benefits compared to conventional nozzle guide vanes (NGV). Aerodynamic loss, heat transfer levels, and cooling requirements are reduced while stage efficiency is improved by approximately 1.5% (for a no-swirl scenario). Engine realistic combustor flow with swirl, however, leads to increased turning nonuniformity downstream of the integrated vanes. This paper thus illustrates the altered integrated vane stage performance caused by inlet swirl. The study shows a distinct performance penalty for the integrated vane rotor as a result of increased rotor incidence and the rotor's interaction with the residual swirl core. The stage efficiency advantage of the integrated combustor vane concept compared to the conventional design is thus reduced to 0.7%. It is furthermore illustrated how integrated vane profiling is suitable to reduce the turning variation across the span downstream of the vane, further improve stage efficiency (in this case by 0.23%) and thus mitigate the distinct impact of inlet swirl on integrated vane stage performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.