The port sector has played an important role in global trade, with ports acting as a transportation chain-ring in environmental-social performance improvement. The usage of sea transportation means has spread across the world. Starting with the Kyoto Protocol for ships, the environmentally friendly trend has encompassed the port sector. However, it is difficult to find a model with the same characteristics as those of the ports as the models. The models can be used to compare operational performance regarding carbon dioxide (CO2) emission production. This research aimed to estimate CO2 emissions at container ports to portray how a port deals with its operational matters, using models suitable for ideal circumstances based on available equipment. This calculative system applies a bottom-up calculation of the work activities at a port, treating the amount of fuel consumption not as an input variable, but as the result of the calculation itself. The input variables include throughput, transshipment process, transportation modality, and terminal layout. The results show that several equipment operational activities can be optimized by comparing the calculation results for actual CO2 emissions. It was found that each twenty-foot equivalent unit produced as much as 11.27 kg of CO2 emissions at the Belawan International Container Terminal in Medan, Indonesia. This research has considerable potential use for ports, showing how to calculate CO2 emissions at a port under ideal circumstances, that models in use can be adapted to any port characteristics, and that the data serving as the input variables are not difficult to obtain.
Sustainable development of container terminals is based on energy efficiency and reduction in CO2 emissions. This study estimated the energy consumption and CO2 emissions in container terminals according to their layouts. Energy consumption was calculated based on utility data as well as fuel and electricity consumptions for each container-handling equipment in the container terminal. CO2 emissions were estimated using movement modality based on the number of movements of and distance travelled by each container-handling equipment. A case study involving two types of container terminal layouts i.e. parallel and perpendicular layouts, was conducted. The contributions of each container-handling equipment to the energy consumption and CO2 emissions were estimated and evaluated using statistical analysis. The results of the case study indicated that on the CO2 emissions in parallel and perpendicular layouts were relatively similar (within the range of 16–19 kg/TEUs). These results indicate that both parallel and perpendicular layouts are suitable for future ports based on sustainable development. The results can also be used for future planning of operating patterns and layout selection in container terminals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.