Holocene relative sea-level (RSL) change is investigated at Nyland Hill (Somerset Levels). The lithostratigraphy comprises turfa peat underlying marine clay, both onlapping a sloping Upper Palaeozoic basement. The altitude of the peat-clay contact ranges from 2.42 to 4.52 m OD, becoming lower down basement slope, yet 14C dates of three samples taken laterally along the contact at different altitudes yield similar ages (3640-3330, 3715-3460, 3725-3465 cal. yrs BP), suggesting either very rapid (‘instantaneous’) RSL rise or sediment compaction. Biostratigraphic data indicate a gradual transition to marine conditions across the peat-clay contact. Therefore, the height difference is interpreted as evidence for significant compaction. We consider 4.64 m OD the minimum pre-compaction altitude, indicating maximum observed compaction of 2.22 m. The clay surface, reclaimed during Roman occupation, represents an anthropogenically induced negative tendency and is dated chemostratigraphically to 1776 ± 46, using a datum related to the onset of local Roman lead mining AD 43-49. Sedimentation rates of the marine clay are established: 1.58-1.92 mm yr-1 and 0.8-0.96 mm yr-1 at sites of maximum and less severe compaction respectively. RSL continued to rise throughout the deposition of the clay unit at a rate of 0.41-0.82 mm yr-1, a view that disagrees with previous models that imply stabilised RSL by 3000 BP. These earlier studies underestimate compaction with implications for subsequent studies employing these sea-level data, particularly in crustal studies where the apparent trend of subsidence is overestimated/increased.
On January 30, 1607, a massive wave from the ocean surged up Bristol Channel in the United Kingdom, flooding more than 500 km2 of lowland along 570 km of coast. It killed 2000 people and is considered Britain's worst natural disaster on land. The wave occurred on a fine day and surprised inhabitants. Contemporary descriptions of the event have many of the characteristics of accounts of recent catastrophic tsunamis. Geomorphic evidence for tsunamis in the channel can be found in the form of transported and imbricated boulders, bedrock sculpturing on coastal platforms and ramps, and, at isolated locations, wholesale erosion of the coastal landscape. Hydrodynamic calculation of the height of the tsunami and flow velocities can be derived from boulder dimensions. Tsunami wave height increased from 4 m in the outer Bristol Channel to more than 6 m within the inner Severn Estuary. Theorized flow velocities range between 11.8 and 18.1 m s1, increasing up the estuary. Under topographic enhancement, these depths and velocities may be sufficient to generate bedrock sculpturing, which is indeed observed at a few locations on rocky headlands in the channel. Interpolation of the amount of cliff retreat at Dunraven Bay indicates that an imbricated boulder train was deposited by tsunami sometime between 1590 AD and 1672 AD, a time span that encompasses the January 30, 1607, event.
A B S T R A C TOn January 30, 1607, a massive wave from the ocean surged up Bristol Channel in the United Kingdom, flooding more than 500 km 2 of lowland along 570 km of coast. It killed 2000 people and is considered Britain's worst natural disaster on land. The wave occurred on a fine day and surprised inhabitants. Contemporary descriptions of the event have many of the characteristics of accounts of recent catastrophic tsunamis. Geomorphic evidence for tsunamis in the channel can be found in the form of transported and imbricated boulders, bedrock sculpturing on coastal platforms and ramps, and, at isolated locations, wholesale erosion of the coastal landscape. Hydrodynamic calculation of the height of the tsunami and flow velocities can be derived from boulder dimensions. Tsunami wave height increased from 4 m in the outer Bristol Channel to more than 6 m within the inner Severn Estuary. Theorized flow velocities range between 11.8 and 18.1 m s Ϫ1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.