Traditional casting technology offers two mayor drawbacks towards research activities. On the one hand, time and resources needed for every casting are rather high. The mould has to be able to withstand the high temperatures introduced by the melt and provide cooling for the cast part. Preparation and installation of measuring equipment therefore takes time. Additionally, due to the high mass of the mould when compared to the cast part, parameter variations are rather limited in their resulting effect on the temperature-time profile being one of the most prominent factors regarding cast quality. Especially when pouring by hand, variations in casting times and rates superimpose effects created intentionally. Therefore, a different process was advanced and evaluated, allowing to minimise some of the drawbacks mentioned before. The key idea is to drastically reduce casting size to the dimensions of one specimen and to apply a highly automated production route. As such, a mirror furnace was modified as to allow the processing of melt. Due to the specimens size, an adaption of mechanical testing equipment was performed and evaluated. As an example, copper-iron bimetal specimens were examined by light microscopy, micro hardness testing, nanoindentation as well as tensile and torsion testing. As the results were consistent, the newly introduced method can be applied successfully in casting research. This allows for highly reproducible results, reducing the uncertainty of temperature measurements of a specimen due to the distance between them. The possibility of separating influencing variables like maximum temperature and cooling rate allows an analysis of the casting process, which would require different moulds to do so in traditional casting methods. The next steps will be directed at a broader variety of metals processed and at a direct comparison between the new process route and traditional casting technology.
Environmental and work safety aspects necessitate a radical change in the foundry industry. Organic binder systems for foundry sand cores create toxic combustion products and are, therefore, more and more often substituted by inorganic binder systems. While providing an environmental advantage by mainly releasing water vapor, inorganic binder systems impose new challenges for the casting process. The gas release of inorganically-bound foundry cores can lead to increased gas porosity in the cast parts and thus to high scrap rates. The present work aims to gain more understanding of the gas generation and transport in inorganic sand binder systems. We developed a test stand to measure the temperature-dependent core gas release in inorganically-bound foundry cores and their gas permeability. Samples were prepared in a core blowing process and analyzed using the test stand. The measurement results are in good agreement with validation experiments and existing literature.
In this work, the acoustic resonance testing method has been extended by a finite element analysis of the examined component to localize cavities within die casting parts. This novel method aims at a fast and efficient quality inspection which allows hidden cavities in cast components to be detected, which is only possible with X-ray technology at the moment. The promising results show that this method enables the localization of shrinkage cavities. Furthermore, the influence of product scatter has been analyzed regarding the accuracy of the calculated position of artificial defects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.