Loss of any one of several neurogenic genes of Drosophila results in overproduction of embryonic neuroblasts at the expense of epidermoblasts. In this paper a variety of altered Notch proteins are expressed in transgenic flies. Dominant lethal, antineurogenic phenotypes were produced by expression of three classes of mutant proteins: (1) a protein comprised of the cytoplasmic domain of Notch and devoid of sequences permitting membrane association; (2) a transmembrane protein lacking the extracellular, lin12/Notch repeats; and (3) transmembrane proteins carrying amino acid substitutions replacing one or both extracellular cysteines thought to be involved in Notch dimerization. These Notch proteins not only suppress the neural hypertrophy observed in Notch- embryos, but also generate a phenotype in which elements of the embryonic nervous system are underproduced. Action of the intracellular cdc10 repeats appears to be essential for wild-type Notch function or for the antineurogenic activity of these proteins. The activities of the dominant, gain-of-function proteins indicate that Notch functions as a signal transducing receptor during ectoderm development. Production of antineurogenic Notch proteins in embryos deficient for the other neurogenic genes allowed functional dependencies to be established. Delta, mastermind, bigbrain, and neuralized appear to function in elaboration of a signal upstream of Notch. Genes of the Enhancer of split complex act after Notch. The cytoplasmic domain of Notch contains nuclear localization sequences that function in cultured cells, and one of the Notch antineurogenic proteins, the cytoplasmic domain, accumulates in nuclei in vivo.
The Notch locus is essential for proper differentiation of the ectoderm in Drosophila melanogaster. Notch corresponds to a 37-kilobase transcription unit that codes for a major 10.4-kilobase polyadenylated RNA. The DNA sequence of this transcription unit is presented, except for portions of the two largest intervening sequences. DNA sequences also were obtained from three Notch cDNA clones, allowing the 5' and 3' ends of the gene to be mapped, and the structures and locations of nine RNA coding regions to be determined. The major Notch transcript encodes a protein of 2,703 amino acids. The protein is probably associated with cell surfaces and carries an extracellular domain composed of 36 cysteine-rich repeating units, each of about 38 amino acids. The gene appears to have evolved by repeated tandem duplications of the DNA coding for the 38-amino-acid-long protein segments, followed by insertion of intervening sequences. These repeating protein segments are quite homologous to portions of mammalian clotting factors IX and X and to the product of the Caenorhabditis elegans developmental gene lin-12. They are also similar to mammalian growth hormones, typified by epidermal growth factor.
Loss of Kuzbanian, a member of the ADAM family of metalloproteases, produces neurogenic phenotypes in Drosophila. It has been suggested that this results from a requirement for kuzbanian-mediated cleavage of the Notch ligand Delta. Using transgenic Drosophila expressing transmembrane Notch proteins, we show that kuzbanian, independent of any role in Delta processing, is required for the cleavage of Notch. We show that Kuzbanian can physically associate with Notch and that removal of kuzbanian activity by RNA-mediated interference in Drosophila tissue culture cells eliminates processing of ligand-independent transmembrane Notch molecules. Our data suggest that in Drosophila, kuzbanian can mediate S2 cleavage of Notch.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.