Metabolism in cells adapts quickly to changes in nutrient availability and cellular differentiation status, including growth conditions in cell culture settings. The last decade saw a vast increase in three-dimensional (3D) cell culture techniques, engendering spheroids and organoids. These methods were established to improve comparability to in vivo situations, differentiation processes and growth modalities. How far spheroids mimic in vivo metabolism, however, remains enigmatic. Here, to our knowledge, we compare for the first time metabolic fingerprints between cells grown as a single layer or as spheroids with freshly isolated in situ tissue. While conventionally grown cells express elevated levels of glycolysis intermediates, amino acids and lipids, these levels were significantly lower in spheroids and freshly isolated primary tissues. Furthermore, spheroids differentiate and start to produce metabolites typical for their tissue of origin. 3D grown cells bear many metabolic similarities to the original tissue, recommending animal testing to be replaced by 3D culture techniques.
Anoikis is a form of apoptosis induced by cell detachment. Integrin inactivation plays a major role in the process but the exact signalling pathway is ill-defined. Here we identify an anoikis pathway using gliotoxin (GT), a virulence factor of the fungus Aspergillus fumigatus, which causes invasive aspergillosis in humans. GT prevents integrin binding to RGD-containing extracellular matrix components by covalently modifying cysteines in the binding pocket. As a consequence, focal adhesion kinase (FAK) is inhibited resulting in dephosphorylation of p190RhoGAP, allowing activation of RhoA. Sequential activation of ROCK, MKK4/MKK7 and JNK then triggers pro-apoptotic phosphorylation of Bim. Cells in suspension or lacking integrin surface expression are insensitive to GT but are sensitised to ROCK-MKK4/MKK7-JNK-dependent anoikis upon attachment to fibronectin or integrin upregulation. The same signalling pathway is triggered by FAK inhibition or inhibiting integrin αV/β3 with Cilengitide. Thus, GT can target integrins to induce anoikis on lung epithelial cells.
Background:The mechanisms through which TRAILR4 interferes with proapoptotic signaling are not conclusively elucidated. Results: TRAILR4 forms ligand-independent heterodimers with TRAIL death receptors, thereby inhibiting both pro-and anti-apoptotic signaling. Conclusion: TRAILR4 exerts a dominant negative effect on TRAILR1 through the PLAD-mediated formation of mixed receptor complexes. Significance: Understanding the mechanism of TRAILR4-mediated apoptosis-inhibition can be advantageous for the development of new TRAIL receptor agonists for cancer therapy.
There is no doubt that viruses require cells to successfully reproduce and effectively infect the next host. The question is what is the fate of the infected cells? All eukaryotic cells can "sense" viral infections and exhibit defence strategies to oppose viral replication and spread. This often leads to the elimination of the infected cells by programmed cell death or apoptosis. This "sacrifice" of infected cells represents the most primordial response of multicellular organisms to viruses. Subverting host cell apoptosis, at least for some time, is therefore a crucial strategy of viruses to ensure their replication, the production of essential viral proteins, virus assembly and the spreading to new hosts. For that reason many viruses harbor apoptosis inhibitory genes, which once inside infected cells are expressed to circumvent apoptosis induction during the virus reproduction phase. On the other hand, viruses can take advantage of stimulating apoptosis to (i) facilitate shedding and hence dissemination, (ii) to prevent infected cells from presenting viral antigens to the immune system or (iii) to kill non-infected bystander and immune cells which would limit viral propagation. Hence the decision whether an infected host cell undergoes apoptosis or not depends on virus type and pathogenicity, its capacity to oppose antiviral responses of the infected cells and/or to evade any attack from immune cells. Viral genomes have therefore been adapted throughout evolution to satisfy the need of a particular virus to induce or inhibit apoptosis during its life cycle. Here we review the different strategies used by viruses to interfere with the two major apoptosis as well as with the innate immune signaling pathways in mammalian cells. We will focus on the intrinsic mitochondrial pathway and discuss new ideas about how particular viruses could activately engage mitochondria to induce apoptosis of their host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.