Semliki Forest virus (SFV) requires RNA replication and Bax/Bak for efficient apoptosis induction. However, cells lacking Bax/Bak continue to die in a caspase-dependent manner. In this study, we show in both mouse and human cells that this Bax/Bak-independent pathway involves dsRNA-induced innate immune signaling via mitochondrial antiviral signaling (MAVS) and caspase-8. Bax/Bak-deficient or Bcl-2– or Bcl-xL–overexpressing cells lacking MAVS or caspase-8 expression are resistant to SFV-induced apoptosis. The signaling pathway triggered by SFV does neither involve death receptors nor the classical MAVS effectors TNFR-associated factor-2, IRF-3/7, or IFN-β but the physical interaction of MAVS with caspase-8 on mitochondria in a FADD-independent manner. Consistently, caspase-8 and -3 activation are reduced in MAVS-deficient cells. Thus, after RNA virus infection MAVS does not only elicit a type I antiviral response but also recruits caspase-8 to mitochondria to mediate caspase-3 activation and apoptosis in a Bax/Bak-independent manner.
There is no doubt that viruses require cells to successfully reproduce and effectively infect the next host. The question is what is the fate of the infected cells? All eukaryotic cells can "sense" viral infections and exhibit defence strategies to oppose viral replication and spread. This often leads to the elimination of the infected cells by programmed cell death or apoptosis. This "sacrifice" of infected cells represents the most primordial response of multicellular organisms to viruses. Subverting host cell apoptosis, at least for some time, is therefore a crucial strategy of viruses to ensure their replication, the production of essential viral proteins, virus assembly and the spreading to new hosts. For that reason many viruses harbor apoptosis inhibitory genes, which once inside infected cells are expressed to circumvent apoptosis induction during the virus reproduction phase. On the other hand, viruses can take advantage of stimulating apoptosis to (i) facilitate shedding and hence dissemination, (ii) to prevent infected cells from presenting viral antigens to the immune system or (iii) to kill non-infected bystander and immune cells which would limit viral propagation. Hence the decision whether an infected host cell undergoes apoptosis or not depends on virus type and pathogenicity, its capacity to oppose antiviral responses of the infected cells and/or to evade any attack from immune cells. Viral genomes have therefore been adapted throughout evolution to satisfy the need of a particular virus to induce or inhibit apoptosis during its life cycle. Here we review the different strategies used by viruses to interfere with the two major apoptosis as well as with the innate immune signaling pathways in mammalian cells. We will focus on the intrinsic mitochondrial pathway and discuss new ideas about how particular viruses could activately engage mitochondria to induce apoptosis of their host.
Viruses can trigger apoptosis of infected host cells if not counteracted by cellular or viral anti-apoptotic proteins. These protective proteins either inhibit the activation of caspases or they act as Bcl-2 homologs to prevent Bax/Bak-mediated outer mitochondrial membrane permeabilization (MOMP). The exact mechanism by which viruses trigger MOMP has however remained enigmatic. Here we use two distinct types of viruses, a double stranded DNA virus, herpes simplex virus-1 (HSV-1) and a positive sense, single stranded RNA virus, Semliki Forest virus (SFV) to show that the BH3-only protein Puma is the major mediator of virus-induced Bax/Bak activation and MOMP induction. Indeed, when Puma was genetically deleted or downregulated by shRNA, mouse embryonic fibroblasts and IL-3-dependent monocytes as well as human colon carcinoma cells were as resistant to virus-induced apoptosis as their Bax/Bak double deficient counterparts (Bax/Bak-/-). Puma protein expression started to augment after 2 h postinfection with both viruses. Puma mRNA levels increased as well, but this occurred after apoptosis initiation (MOMP) because it was blocked in cells lacking Bax/Bak or overexpressing Bcl-xL. Moreover, none of the classical Puma transcription factors such as p53, p73 or p65 NFκB were involved in HSV-1-induced apoptosis. Our data suggest that viruses use a Puma protein-dependent mechanism to trigger MOMP and apoptosis in host cells.
promoter SNPs are associated with the natural course of HCV infection and show higher transcriptional activities. Our results imply the DNA sensor TLR9 in natural immunity against the RNA virus, HCV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.