The ability of light to carry and deliver orbital angular momentum (OAM) in the form of optical vortices has attracted much interest. The physical properties of light with a helical wavefront can be confined onto two-dimensional surfaces with subwavelength dimensions in the form of plasmonic vortices, opening avenues for thus far unknown light-matter interactions. Because of their extreme rotational velocity, the ultrafast dynamics of such vortices remained unexplored. Here we show the detailed spatiotemporal evolution of nanovortices using time-resolved two-photon photoemission electron microscopy. We observe both long- and short-range plasmonic vortices confined to deep subwavelength dimensions on the scale of 100 nanometers with nanometer spatial resolution and subfemtosecond time-step resolution. Finally, by measuring the angular velocity of the vortex, we directly extract the OAM magnitude of light.
Integrated single-photon sources with high photon-extraction efficiency are key building blocks for applications in the field of quantum communications. We report on a bright single-photon source realized by on-chip integration of a deterministic quantum dot microlens with a 3D-printed multilens micro-objective. The device concept benefits from a sophisticated combination of in situ 3D electron-beam lithography to realize the quantum dot microlens and 3D femtosecond direct laser writing for creation of the micro-objective. In this way, we obtain a high-quality quantum device with broadband photon-extraction efficiency of (40 ± 4)% and high suppression of multiphoton emission events with g(2)(τ = 0) < 0.02. Our results highlight the opportunities that arise from tailoring the optical properties of quantum emitters using integrated optics with high potential for the further development of plug-and-play fiber-coupled single-photon sources.
We demonstrate the fabrication of optical elements on the millimeter scale by stitching-free 3D printing via two-photon polymerization, using a commercial microfabrication system (Nanoscribe GmbH). Previous limitations are overcome by the use of a large writing field objective as well as a novel high transparency resist. The printed optical components are free of stitching defects due to a single step exposure and exhibit an unpreceded glass-like appearance due to the low absorption of the resist material throughout the entire visible wavelength range. We print aspherical focusing lenses, characterize and optimize their shape fidelity, and find their optical performance close to the simulated optimum. For comparison with commercially available glass lenses we also fabricate spherical half-ball lenses of different sizes. The imaging quality of the lenses is very similar, underpinning the powerfulness of our fabrication strategy.
3D printing of micro-optics has recently become a very powerful fabrication method for sub-millimeter sized optics. Miniature optical systems and entire optical instruments such as endoscopes have become possible with this technique. 3D printed complex micro-optical systems are printed in one single process, rather than being assembled. This precludes anti-reflection coating of the individual lenses before assembly by conventional coating methods such as sputtering or directed plasma etching, as voids between the individual lenses cannot be reached by a directed coating beam. We solve this issue by conformal low-temperature thermal atomic layer deposition (ALD) which is compatible with the low glass transition temperature of the utilized 3D printed polymer materials. Utilizing 4-layer designs, we decrease the broadband reflectivity of coated flat substrates in the visible to below 1%. We characterize and investigate the properties of the coatings based on transmission measurements through coated and uncoated 3D printed test samples as well as through a double-lens imaging system. We find that the reflectivity is significantly reduced and conversely the transmission is enhanced, which is of particular interest for low-light applications. Furthermore, the physical durability and resistance against humidity uptake should also be improved.
We demonstrate 3D printed aspherical singlet and doublet microoptical components by grayscale lithography and characterize and evaluate their excellent shape accuracy and optical performance. The typical two-photon polymerization (2PP) 3D printing process creates steps in the structure which is undesired for optical surfaces. We utilize two-photon grayscale lithography (2GL) to create step-free lenses. To showcase the 2GL process, the focusing ability of a spherical and aspherical singlet lens are compared. The surface deviations of the aspherical lens are minimized by an iterative design process and no distinct steps can be measured via confocal microscopy. We design, print, and optimize an air-spaced doublet lens with a diameter of 300 µm. After optimization, the residual shape deviation is less than 100 nm for the top lens and 20 nm for the bottom lens of the doublet. We examine the optical performance with an USAF 1951 resolution test chart to find a resolution of 645 lp/mm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.