Minor prenylated hop compounds have been attracting increasing attention due to their promising anticarcinogenic properties. Even after intensive purification from natural raw extracts, allocating certain activities to single compounds or complex interactions of the main compound with remaining impurities in very low concentration is difficult. In this study, dose-dependent antiproliferative and cytotoxic effects of the promising xanthohumol (XN) analogue xanthohumol C (XNC) were evaluated and compared to XN and a XN-enriched hop extract (XF). It was demonstrated that the cell growth inhibition of human breast cancer cell line (MCF-7) significantly increases after being treated with XNC compared to XN and XF. Based on label-free data-dependent acquisition proteomics, physiological influences on the proteome of MCF-7 cells were analyzed. Different modes of action between XNC and XN treated MCF-7 cells could be postulated. XNC causes ER stress and seems to be involved in cell-cell adhesion, whereas XN influences cell cycles and DNA replication as well as type I interferon signaling pathway. The results demonstrate the utility of using quantitative proteomics for bioactivity screenings of minor hop compounds and underscore the importance of isolating highly pure compounds into their distinct forms to analyze their different and possibly synergistic activities and modes of action.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.