3D terahertz computed tomography has been performed using a monochromatic millimeter wave imaging system coupled with an infrared temperature sensor. Three different reconstruction methods (standard back-projection algorithm and two iterative analysis) have been compared in order to reconstruct large size 3D objects. The quality (intensity, contrast and geometric preservation) of reconstructed cross-sectional images has been discussed together with the optimization of the number of projections. Final demonstration to real-life 3D objects has been processed to illustrate the potential of the reconstruction methods for applied terahertz tomography.
A monochromatic millimeter-wave imaging system coupled with an infrared temperature sensor has been used to investigate historic objects preserved at the Museum of Aquitaine (France). In particular, two-dimensional and three-dimensional analyses have been performed in order to reveal the internal structure of nearly 3500-year-old sealed Egyptian jars.
Terahertz imaging and conventional X ray have been used to investigate a sealed Ancient Egyptian jar preserved at the Museum of Aquitaine (France). Terahertz radiation revealed an unknown content that could not have been visualized by X ray. By comparison with a model object, we concluded that this content was composed of organic materials explaining their relative radiolucency.
We retrieve the complex optical index of single-walled carbon nanotube (CNT) films in the 0.6-800 μm spectral range. Results are obtained from a complete set of optical measurements, reflection and transmission, of free-standing CNT films using time domain spectroscopy in the terahertz (THz) and Fourier transform infrared (IR) spectroscopy in the visible-IR. Based on a Drude-Lorentz model, our results reveal a global metallic behavior of the films in the IR, and confirm their high optical index in the THz range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.