Though Pr3+ doped LiYF4 (LiYF4:Pr3+) bulk crystals are a well-known laser gain material with several radiative transitions, their nanocrystal counterparts have not been investigated with regards to these. Through downsizing...
In recent years, lanthanide-doped nanothermometers have been mainly used in thin films or dispersed in organic solvents. However, both approaches have disadvantages such as the short interaction lengths of the active material with the pump beam or complicated handling, which can directly affect the achievable temperature resolution. We investigated the usability of a polymer fiber doped with upconversion nanocrystals as a thermometer. The fiber was excited with a wavelength stabilized diode laser at a wavelength of 976 nm. Emission spectra were recorded in a temperature range from 10 to 35 ∘C and the thermal emission changes were measured. Additionally, the pump power was varied to study the effect of self-induced heating on the thermometer specifications. Our fiber sensor shows a maximal thermal sensitivity of 1.45%/K and the minimal thermal resolution is below 20 mK. These results demonstrate that polymer fibers doped with nanocrystals constitute an attractive alternative to conventional fluorescence thermometers, as they add a long pump interaction length while also being insensitive to strong electrical fields or inert to bio-chemical environments.
Producing active polymer optical fibers (POFs) is a key step towards new applications such as fluorescent fiber solar concentrators (FFSCs), sensors, contactless coupling devices, or fiber integrated light sources and lasers. Therefore, integration of fluorescent nanoparticles into the polymer matrix is necessary and becomes accessible via in situ polymerization. For optical applications, the polymer has to fulfill various requirements such as chemical and physical stability, optical transparency in the application-relevant spectral region as well as a good synthetic accessibility. A common material for these is poly(methyl methacrylate) (PMMA). The β-phase NaYF 4 :Yb 3+ ,Er 3+ upconversion nanoparticles (UCNP) were synthesized from the rare earth salts via thermal decomposition method in high-boiling point solvent 1-octadecene and capping agent oleic acid. Current results show hazy samples of the polymer with integrated nanoparticles made from monomer solution of methyl methacrylate. However, further optical tuning such as increasing the transparency of the bulk samples by changing the monomer solution to non-polar n-butyl methacrylate (nButMA) or cyclohexyl methacrylate (CHMA) or further optimization of the UCNP shell could lead to more suitable polymer bulk samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.