Slow-wave sleep is thought to be important for retuning cortical synapses, but the cellular mechanisms remain unresolved. During slow-wave activity, cortical neurons display synchronized transitions between depolarized Up states and hyperpolarized Down states. Here, using recordings from LIII pyramidal neurons from acute slices of mouse medial entorhinal cortex, we find that subthreshold inputs arriving during the Up state undergo synaptic weakening. This does not reflect a process of global synaptic downscaling, as it is dependent on presynaptic spiking, with network state encoded in the synaptically evoked spine Ca2+ responses. Our data indicate that the induction of synaptic weakening is under postsynaptic control, as it can be prevented by correlated postsynaptic spiking activity, and depends on postsynaptic NMDA receptors and GSK3β activity. This provides a mechanism by which slow-wave activity might bias synapses towards weakening, while preserving the synaptic connections within active neuronal assemblies.
The increasing development of flexible and printed electronics has fueled substantial advancements in selective laser sintering, which has been attracting interest over the past decade. Laser sintering of metal nanoparticle dispersions in particular (from low viscous inks to high viscous pastes) offers significant advantages with respect to more conventional thermal sintering or curing techniques. Apart from the obvious lateral selectivity, the use of short-pulsed and high repetition rate lasers minimizes the heat affected zone and offers unparalleled control over a digital process, enabling the processing of stacked and pre-structured layers on very sensitive polymeric substrates. In this work, the authors have conducted a systematic investigation of the laser sintering of micro-patterns comprising Ag nanoparticle high viscous inks: The effect of laser pulse width within the range of 20–200 nanoseconds (ns), a regime which many commercially available, high repetition rate lasers operate in, has been thoroughly investigated experimentally in order to define the optimal processing parameters for the fabrication of highly conductive Ag patterns on polymeric substrates. The in-depth temperature profiles resulting from the effect of laser pulses of varying pulse widths have been calculated using a numerical model relying on the finite element method, which has been fed with physical parameters extracted from optical and structural characterization. Electrical characterization of the resulting sintered micro-patterns has been benchmarked against the calculated temperature profiles, so that the resistivity can be associated with the maximal temperature value. This quantitative correlation offers the possibility to predict the optimal process window in future laser sintering experiments. The reported computational and experimental findings will foster the wider adoption of laser micro-sintering technology for laboratory and industrial use.
Abstract:In the present paper we investigate the possibility of narrowing the depth range of a physical Shack -Hartmann (SH) wavefront sensor (WFS) by using coherence gating. For the coherence gating, two low coherence interferometry (LCI) methods are evaluated and proof of principle configurations demonstrated: (i) a time domain LCI method based on phase shifting interferometry and (ii) a spectral domain LCI method, based on tuning a narrow band optical source. The two configurations are used to demonstrate each, the possibility of constructing a coherence gated (CG) SH/WFS. It is shown that these configurations produce spot patterns similar to those provided by a conventional SH/WFS. The two proof of principle configurations are also used to illustrate elimination of stray reflections in the interface optics which normally disturb the operation of conventional SH/WFSs. The speed and noise performance of the two CG-SH/WFS implementations are discussed.
The combination of optical manipulation and threedimensional imaging is a central technique in fields ranging from medicine to physics. Using the objective lens simultaneously for optical trapping and imaging, however, inherently confines the trapping and imaging planes to the same focal plane. Here, we combine remote refocusing microscopy and optical trapping to optically decouple the imaging and trapping planes, achieving aberration-free three-dimensional imaging and simultaneous, decoupled optical trapping without the need for feedback or aberration corrections. We demonstrate our approach by directly imaging the flow field around optically trapped spheres in three dimensions. Due to its compatibility with other imaging and optical manipulation techniques, our approach is relevant to the wide range of fields that combine imaging and optical manipulation, such as physical chemistry, cell biology, and soft matter.
Remote focussing microscopy allows sharp, in-focus images to be acquired at high speed from outside of the focal plane of an objective lens without any agitation of the specimen. However, without careful optical alignment, the advantages of remote focussing microscopy could be compromised by the introduction of depth-dependent scaling artifacts. To achieve an ideal alignment in a point-scanning remote focussing microscope, the lateral (XY) scan mirror pair must be imaged onto the back focal plane of both the reference and imaging objectives, in a telecentric arrangement. However, for many commercial objective lenses, it can be difficult to accurately locate the position of the back focal plane. This paper investigates the impact of this limitation on the fidelity of three-dimensional data sets of living cardiac tissue, specifically the introduction of distortions. These distortions limit the accuracy of sarcomere measurements taken directly from raw volumetric data. The origin of the distortion is first identified through simulation of a remote focussing microscope. Using a novel three-dimensional calibration specimen it was then possible to quantify experimentally the size of the distortion as a function of objective misalignment. Finally, by first approximating and then compensating the distortion in imaging data from whole heart rodent studies, the variance of sarcomere length (SL) measurements was reduced by almost 50%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.