[1] We investigate how existing veins interact with extension fractures in rocks using 3-D Discrete Element Method models with a geometry inspired by tension tests with notched samples. In a sensitivity study, we varied (a) the angle between the vein and the bulk extension direction and (b) the strength ratio between host rock and vein material. Results show a range of vein-fracture interactions, which fall into different, robust, "structural styles." Veins, which are weaker than the host rock, tend to localize fracturing into the vein, even at high-misorientation angles. Veins, which are stronger than the host rock, cause deflection of the fracture tip along the vein-host rock interface. Fractures are arrested at the interface from weak to stronger material. When propagating from a stronger to a weaker material, macroscopic bifurcation of the fracture is common. Complex interactions are favored by a low angle between the vein and the fracture and by high-strength contrast. The structural styles in the models show good agreement with microstructures and mesostructures of crack-seal veins found in natural systems. We propose that these structural styles form the basis for criteria to recognize strength contrasts and stress of crack-seal systems in nature.Citation: Virgo, S., S. Abe, and J. L. Urai (2013), Extension fracture propagation in rocks with veins: Insight into the crack-seal process using Discrete Element Method modeling,
The structural evolution of the carbonate platform in the footwall of the Semail ophiolite emplaced onto the passive continental margin of Arabia helps to better understand the early stages of obduction‐related orogens. These early stages are rarely observable in other orogens as they are mostly overprinted by later mountain building phases. We present an extensive structural analysis of the Jebel Akhdar anticline, the largest tectonic window of the Oman Mountains, and integrate it on different scales. Outcrop observations can be linked to plate motion data, providing an absolute timeframe for structural generations consistent with radiometric dating of veins. Top‐to‐S overthrusting of the Semail ophiolite and Hawasina nappes onto the carbonate platform during high plate convergence rates between Arabia and Eurasia caused rapid burial and overpressure, generation and migration of hydrocarbons, and bedding‐confined veins, but no major deformation in the carbonate platform. At reduced convergence rates, subsequent tectonic thinning of the ophiolite took place above a top‐to‐NNE, crustal‐scale ductile shear zone, deforming existing veins and forming a cleavage in clay‐rich layers in early Campanian times. Ongoing extension occurred along normal‐ to oblique‐slip faults, forming horst‐graben structures and a precursor of the Jebel Akhdar dome (Campanian to Maastrichtian). This was followed by NE‐SW oriented ductile shortening and the formation of the Jebel Akhdar dome, deforming the earlier structures. Thereafter, exhumation was associated with low‐angle normal faults on the northern flank of the anticline. We correlate the top‐to‐NNE crustal‐scale shear zone with a similar structure in the Saih Hatat window to develop a unified model of the tectonic evolution of the Oman Mountains.
Veins are ubiquitous in upper and middle crustal rocks. Due to strength and stiffness contrast to the host rock, veins can influence crack propagation. Here we present Discrete Element Models to investigate crack-vein interactions by simulating cycles of fracturing of a rock mass, sealing the cracks to form veins, and refracturing the rock mass after rotating the stress field. We observe different styles of interaction between new fractures and existing veins, depending on the strength ratio between vein and host rock and on the changes in the stress field between the different deformation stages. If the orientation of stress field does not change between deformation stages, ataxial crack seal veins are produced if the veins are weak and a bundle of subparallel microveins if the veins are strong. If the stress field is rotated between deformation stages, the interactions include reactivation, fracture deflection, and crosscutting. Reactivation of weak veins occurs even if the vein orientation is highly unfavorable relative to the stress field. Relays of fractures between reactivated veins form at a higher angle to the veins than expected. This demonstrates that the orientation of secondary veins does not reflect the regional stress field in a simple manner and that veins can strongly influence fracture connectivity, with implications for paleostress analysis and basin modeling. Simulation results compare well with field examples of multiphase vein networks in carbonates from Jebel Akhdar, Oman.
ABSTRACT. The Mesozoic succession of the Jabal Akhdar dome in the Oman
Abstract. In multiply deformed terrains multiphase boudinage is common, but identification and analysis of these is difficult. Here we present an analysis of multiphase boudinage and fold structures in deformed amphibolite layers in marble from the migmatitic centre of the Naxos metamorphic core complex. Overprinting between multiple boudinage generations is shown in exceptional 3-D outcrop. We identify five generations of boudinage, reflecting the transition from high-strain high-temperature ductile deformation to medium-to low-strain brittle boudins formed during cooling and exhumation. All boudin generations indicate E-W horizontal shortening and variable direction of bedding parallel extension, evolving from subvertical extension in the earliest boudins to subhorizontal N-S extension during exhumation. Two phases of E-W shortening can be inferred, the first associated with lower crustal synmigmatic convergent flow and the second associated with exhumation and N-S extension, possibly related to movement of the North Anatolian Fault.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.