The capsaicin receptor TRPV1 has been intensively studied by cryo-electron microscopy and functional tests. However, though the apo and capsaicin-bound structural models are available, the dynamic process of capsaicin activation remains intangible, largely due to the lack of a capsaicin-induced open structural model and the low occupancy of the transition states. Here we report that reducing temperature toward the freezing point substantially increased channel closure events even in the presence of saturating capsaicin. We further used a combination of fluorescent unnatural amino acid (fUAA) incorporation, computational modeling, and rate-equilibrium linear free-energy relationships analysis (Φ-analysis) to derive the fully open capsaicin-bound state model, and reveal how the channel transits from the apo to the open state. We observed that capsaicin initiates a conformational wave that propagates through the S4–S5 linker towards the S6 bundle and finally reaching the selectivity filter. Our study provides a temporal mechanism for capsaicin activation of TRPV1.
Vanilloids activation of TRPV1 represents an excellent model system of ligand-gated ion channels. Recent studies using cryo-electron microcopy (cryo-EM), computational analysis, and functional quantification revealed the location of capsaicin-binding site and critical residues mediating ligand-binding and channel activation. Based on these new findings, here we have successfully introduced high-affinity binding of capsaicin and resiniferatoxin to the vanilloid-insensitive TRPV2 channel, using a rationally designed minimal set of four point mutations (F467S-S498F-L505T-Q525E, termed TRPV2_Quad). We found that binding of resiniferatoxin activates TRPV2_Quad but the ligand-induced open state is relatively unstable, whereas binding of capsaicin to TRPV2_Quad antagonizes resiniferatoxin-induced activation likely through competition for the same binding sites. Using Rosettabased molecular docking, we observed a common structural mechanism underlying vanilloids activation of TRPV1 and TRPV2_Quad, where the ligand serves as molecular "glue" that bridges the S4-S5 linker to the S1-S4 domain to open these channels. Our analysis revealed that capsaicin failed to activate TRPV2_Quad likely due to structural constraints preventing such bridge formation. These results not only validate our current working model for capsaicin activation of TRPV1 but also should help guide the design of drug candidate compounds for this important pain sensor.on channels constitute the second largest family of drug targets for therapeutics (1-3); therefore, understanding their gating mechanisms by small-molecule ligands is critical for both basic and translational research. Capsaicin activation of the pain-sensing transient receptor potential vanilloid 1 (TRPV1) ion channel represents an outstanding model system for understanding liganddependent gating process (4), because capsaicin not only potently activates the channel with a submicromolar EC 50 (5) but also effectively stabilizes the channel at high open probability (6-8). Moreover, capsaicin activation is highly selective for TRPV1 channel (5). Previous mutagenesis (9, 10) and cryo-EM studies (11,12) have shown that capsaicin binds near the third (S3) and fourth (S4) transmembrane segments of TRPV1 (Fig. 1A). Based on the high-resolution cryo-EM structures, we have used a combination of computational and functional assays to reveal that capsaicin takes a "tail-up, head-down" configuration in the ligand-binding pocket (6) (Fig. 1B). The aliphatic tail forms extensive but nonspecific van der Waals (VDW) interactions with residues lining the binding pocket, whereas the vanillyl group (head) and the amide group (neck) of capsaicin form a hydrogen bond with E571 on S4-S5 linker and T551 on S4, respectively. To activate TRPV1, VDW interactions first secure capsaicin in the pocket and the neck of capsaicin forms a hydrogen bond with T551. This is followed by the formation of another hydrogen bond between the head and E571, which stabilizes the outward conformation of S4-S5 linker to open the chann...
Transient receptor potential (TRP) channels respond to various chemical and physical stimuli by mediating cation influx. The skin expresses abundant TRP channels of different subtypes, which play an essential role in the maintenance of skin functionality. Here, we report cases of mutations in TRPM4, which encodes TRPM4, a Ca 2þ-activated monovalent cation channel, as a cause of an autosomal dominant form of progressive symmetric erythrokeratodermia. In three separate families with progressive symmetric erythrokeratodermia, we identified two missense mutations (c.3099C>G and c.3119T>C) that produce p.Ile1033Met and p.Ile1040Thr, both of which are located in the S6 transmembrane domain of the TRPM4 protein. The substitutions are expected to directly affect activation gating of TRPM4 according to the cryo-EM structures. Electrophysiological studies of the mutants showed substantial hyperactivity, as evidenced by pronounced baseline activity, enhanced sensitivity to intracellular Ca 2þ , and an elevated resting membrane potential. In vitro studies showed enhanced proliferation in keratinocytes overexpressing either of the mutants. We also detected an up-regulation of markers for proliferation and differentiation of keratinocytes in the affected skin tissues. Our study identified TRPM4 as an important player in the pathogenesis of skin TRP channelopathies and a potential target for treatment of skin hyperkeratotic disorders.
Background and Purpose Like chili peppers, gingers produce pungent stimuli by a group of vanilloid compounds that activate the nociceptive transient receptor potential vanilloid 1 (TRPV1) ion channel. How these compounds interact with TRPV1 remains unclear. Experimental Approach We used computational structural modelling, functional tests (electrophysiology and calcium imaging), and mutagenesis to investigate the structural mechanisms underlying ligand–channel interactions. Key Results The potency of three principal pungent compounds from ginger —shogaol, gingerol, and zingerone—depends on the same two residues in the TRPV1 channel that form a hydrogen bond with the chili pepper pungent compound, capsaicin. Computational modelling revealed binding poses of these ginger compounds similar to those of capsaicin, including a “head‐down tail‐up” orientation, two specific hydrogen bonds, and important contributions of van der Waals interactions by the aliphatic tail. Our study also identified a novel horizontal binding pose of zingerone that allows it to directly interact with the channel pore when bound inside the ligand‐binding pocket. These observations offer a molecular level explanation for how unique structures in the ginger compounds affect their channel activation potency. Conclusions and Implications Mechanistic insights into the interactions of ginger compounds and the TRPV1 cation channel should help guide drug discovery efforts to modulate nociception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.