Euonymus species from the Celastraceae family are considered as a source of unusual genes modifying the oil content and fatty acid composition of vegetable oils. Due to the possession of genes encoding enzyme diacylglycerol acetyltransferase (DAcT), Euonymus plants can synthesize and accumulate acetylated triacyglycerols. The gene from Euonymus europaeus (EeDAcT) encoding the DAcT was identified, isolated, characterized, and modified for cloning and genetic transformation of plants. This gene has a unique nucleotide sequence and amino acid composition, different from orthologous genes from other Euonymus species. Nucleotide sequence of original EeDAcT gene was modified, cloned into transformation vector, and introduced into tobacco plants. Overexpression of EeDAcT gene was confirmed, and transgenic host plants produced and accumulated acetylated triacylglycerols (TAGs) in immature seeds. Individual transgenic plants showed difference in amounts of synthesized acetylTAGs and also in fatty acid composition of acetylTAGs.
Plant viruses threaten agricultural production by reducing the yield, quality, and economical benefits. Tomato mosaic virus (ToMV) from the genus Tobamovirus causes serious losses in the quantity and quality of tomato production. The management of plant protection is very difficult, mainly due to the vector-less transmission of ToMV. Resistant breeding generally has low effectiveness. The most practical approach is the use of a rapid diagnostic assay of the virus’ presence before the symptoms occur in plants, followed by the eradication of virus-infected plants. Such approaches also include serological detection methods (ELISA and Western immunoblotting), where antibodies need to be developed for an immunochemical reaction. The development and characterization of polyclonal antibodies for the detection of ToMV with appropriate parameters (sensitivity, specificity, and cross-reactivity) were the subjects of this study. A new polyclonal antibody, AB-1, was developed in immunized rabbits using the modified oligopeptides with antigenic potential (sequences are revealed) derived from the coat protein of ToMV SL-1. the developed polyclonal antibody. AB-1, showed higher sensitivity when compared with commercially available analogs. It also detected ToMV in infected pepper and eggplant plants, and detected another two tobamoviruses (TMV and PMMoV) and ToMV in soil rhizosphere samples and root residues, even two years after the cultivation of the infected tomato plant.
Bean common mosaic virus from the genus Potyvirus has a wide range of hosts and a very negative impact on cultivated crops from the genus Phaseolus. The risk of viral infection of economically important crops increases even if the carriers of the virus are related plant species growing on agroecological interfaces. Such plant species have emerged as new hosts for BCMV, usually harboring novel genetic variants of the virus. A novel genetic variant of BCMV was isolated from a symptomatic crownvetch plant, where the presence of this virus was confirmed by Western-blotting analysis and by amino acid identities in peptide fragments of CI, HC-pro, and CP proteins using the nanoLC-ESI-Q-TOF. The novel BCMV SVK isolate differed from the most genetically similar one in 0.91% of nucleotides and 1.55% of amino acids. The highest number of amino acid substitutions (8.8% of amino acids) was in the P1 protein, followed by CP (2.44% of amino acids). Minor substitutions were in Hc-pro, CI, and Nib proteins. The symptomatic crownvetch plant was confirmed as a new host and carrier of the novel BCMV isolate.
Plant viruses are a threat to a sustainable economy because they cause economic losses in yields. The epidemiology of plant viruses is of particular interest because of their dynamic spread by insect vectors and their transmission by seeds. The speed and direction of viral evolution are determined by the selective environment in which they are found. Knowledge of the ecology of plant viruses is critical to the transmission of many plant viruses. Accurate and timely detection of plant viruses is an essential part of their control. Rapid climate change and the globalization of trade through free trade agreements encourage the transmission of vectors and viruses from country to country. Another factor affecting the emergence of viruses is the cultivation of monocultures with low genetic diversity a nd high plant density. Trade in plant material (germplasm and living plants) also cause the emergence of new viruses. Viruses have a fast adaptation and development in a new environment. Aphids are the most widespread and important vectors of plant viruses. Myzus persicae transmits more than 100 different plant viruses. In nature plant viruses are transmitted also by nematodes, fungi, mites, leafhoppers, whiteflies, beetles, and planthoppers. The symptoms of viral diseases are very diverse and are often confused with symptoms of abiotic stress. Control of viral diseases is based on two strategies: i) immunization (genetic resistance acquired by plant transformation, breeding, or cross-protection), ii) prophylaxis to limit viruses (removal of infected plants and control of their vectors). For management, we rely on quick and accurate identification of the disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.