This study investigated the potential possibilities for obtaining textile transmission lines by incorporating conductive yarns into fabrics through a hot air welding process. Hot air sealing for obtaining textile transmission line was conducted using 100 % PES woven fabric, GoreTex ® waterproof welding tape and seven different conductive yarn types, in order to form different textile transmission lines. By manufacturing using a hot air seam-sealing machine different welding parameters like welding temperature, pressure and velocity were chosen in order to find an optimal welding process for the selected fabric samples. The effects of welding parameters were examined on the electrical properties of the textile transmission lines in terms of conductivity and signal-transferring capability. Besides, the bending properties and morphologies of the welded textile transmission lines were also characterized and subjective evaluations of the appearances of textile transmission lines like puckering and the visual appearances of the surface sides of the welded textile transmission lines. The results based on conductivity and signal transferring capabilities were really promising for the manufacturing of etextile transmission lines via hot air welding technology. Moreover, the results based on bending properties showed that the lower the welding parameters the less rigid the hot air welded textile transmission lines became after welding all the used conductive yarns. Further, suitable combinations of welding parameters with the used components of textile transmission assured suitable visual appearances of the welded textile transmission lines. In this respect this research work offers a usage for hot air welding technology regarding the formations of textile transmission lines which are reliable and durable in functionality while still preserving the textiles' aspects.
This study examined the effects of ultrasonic welding parameters on bond strength, seam thickness and seam stiffness, as well as water permeability. For study purpose, two types of four-layered fabrics with same compositions and different areal densities suitable for inner part of sport shoes were used. Two different types of seams, lapped and superimposed, were applied for ultrasonic welding and also compared by traditional seam applied by shoe manufacturer. The morphology of different type of seams was also analyzed to observe the influence of welding parameters on the layers during the ultrasonic welding process. Bonding strength was found to depend on the seam type and composition of the joined fabric layers. It was confirmed by the shoe manufacturer that all the produced welded seams provided the requested minimum bond strength to be suitable for the use of the shoes. The traditional seams applied by the shoe manufacturer were thicker but had lower stiffness in comparison to all welded seams. It was also found out that ultrasonic welding damaged the membrane, which was confirmed by no water resistance of welded seams. Statistical analysis showed that ultrasonic welding parameters, such as welding frequency and velocity, influence the bond strength, thickness, and bending stiffness of welded seams, but the obtained results were statistically insignificant.
In this research, the use of new technologies for the development of special protective overall for sport aircraft pilots was studied, with a focus on a comparative analysis of the static and dynamic body postures’ dimensions, intended for the development of the overall’s pattern design. For this purpose, digitalization of five male persons was carried out with the 3D human body scanner Vitus Smart by using 3D printed markers, precisely positioned on defined body locations, intended for exact measurement of body dimensions. Male persons, aged between 19 and 35 years with the same athletic body type and different body heights and body mass indexes (BMIs), were scanned in a standard static standing body posture and three dynamic body postures. A comparative analysis between the static and dynamic body postures was carried out. Based on the established body dimensions and girth dimensions of the 3D body model with 3D-modeled compression elements, made-to-measure construction of the overall pattern design was carried out. The function of these compression elements is redistribution of the blood from the lower extremities to the upper body parts at the appearance of high g-forces. Therefore, increased girth dimensions due to the use of compression elements were applied in the overall development process as construction measures with needed ease allowances. The functionality of the developed special protective overall was explored on the scanned 3D body model with 3D-modeled compression elements in a real sitting posture of the sport aircraft pilot in a cab by using virtual prototyping. The virtual simulation technology showed that a well-fitted protective overall for sport aircraft pilots can be developed by using a 3D scanned body model of a person in a sitting posture and its 3D body dimensions.
Purpose -The purpose of this paper is to analyse some mechanical properties and parameters of drapability using different methods from two different points of research area: knowledge bases and numerical modelling using the finite element method. Design/methodology/approach -The approach consists of analysing some mechanical properties and parameters of drapability using different methods from two different points of research area: knowledge bases and numerical modelling using the finite element method. The knowledge bases, named FP_B-1 and FPO_B-2, were used to analyse the bending rigidity of fused panels. The numerical model of fused panel NMFP is used to analyse parameters of drapability. Findings -Based on the analyses of bending rigidity and draping of fused panels the conclusions indicate the significance of interaction between mechanical properties and parameters of drapability of the fused panel to garment appearance. Furthermore, the methods used present a computer approach to the study of the fused panel properties important for the computer-based engineering and the presentation of real behaviour of all aspects of clothes. Practical implications -This numerical model of a fused panel enables a 3D observation of this aspect of clothes' which is a behaviour, very important contribution to the computer planning of the behaviour of produced clothes. Originality/value -A better understanding of how to construct fused panels in clothing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.