Presynaptic ionotropic glutamate receptors are increasingly attributed a role in the modulation of sensory input at the first synapse of dorsal root ganglion (DRG) neurons in the spinal dorsal horn. Central terminals of DRG neurons express AMPA and NMDA receptors whose activation modulates the release of glutamate, the main transmitter at these synapses. Previous work, with an antibody that recognizes all low-affinity kainate receptor subunits (GluR5, 6, 7), provided microscopic evidence of presynaptic kainate receptors in unidentified primary afferent terminals in superficial laminae of the spinal dorsal horn (Hwang SJ, Pagliardini S, Rustioni A, Valtschanoff JG. Presynaptic kainate receptors in primary afferents to the superficial laminae of the rat spinal cord. J Comp Neurol 2001; 436: pp. 275-289). We show here that, although all such subunits may be expressed in these terminals, GluR5 is the subunit most readily detectable at presynaptic sites in sections processed for immunocytochemistry. We also show that the high-affinity kainate receptor subunits KA1 and KA2 are expressed in central terminals of DRG neurons and are co-expressed with low-affinity receptor subunits in the same terminals. Quantitative data show that kainate-expressing DRG neurons are about six times more likely to express the P2X(3) subunit of the purinergic receptor than to express substance P. Thus, nociceptive afferents that express presynaptic kainate receptors are predominantly non-peptidergic, suggesting a role for these receptors in the modulation of neuropathic rather than inflammatory pain.
Ionotropic glutamate receptors (IGR), including NMDA, AMPA, and kainate receptors, are expressed in terminals with varied morphology in the superficial laminae (I-III) of the dorsal horn of the spinal cord. Some of these terminals can be identified as endings of primary afferents, whereas others establish symmetric synapses, suggesting that they may be gamma-aminobutyric acid (GABA)-ergic. In the present study, we used confocal and electron microscopy of double immunostaining for GAD65, a marker for GABAergic terminals, and for subunits of IGRs to test directly whether IGRs are expressed in GABAergic terminals in laminae I-III of the dorsal horn. Although colocalization is hard to detect with confocal microscopy, electron microscopy reveals a substantial number of terminals immunoreactive for GAD65 also stained for IGRs. Among all GAD65-immunoreactive terminals counted, 37% express the NMDA receptor subunit NR1; 28% are immunopositive using an antibody for the GluR2/4 subunits of the AMPA receptor; and 20-35% are immunopositive using antibodies for the kainate receptor subunits GluR5, GluR6/7, KA1, or KA2. Terminals immunoreactive for IGR subunits and GAD65 establish symmetric synapses onto dendrites and perikarya and can be presynaptic to primary afferent terminals within both type 1 and type 2 synaptic glomeruli. Activation of presynaptic IGR may reduce neurotransmitter release. As autoreceptors in terminals of Adelta and C afferent fibers in laminae I-III, presynaptic IGRs may play a role in inhibiting nociception. As heteroreceptors in GABAergic terminals in the same laminae, on the other hand, presynaptic IGRs may have an opposite role and even contribute to central sensitization and hyperalgesia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.