The research on two-stroke engines has been focused lately on the development of direct injection systems for reducing the emissions of hydrocarbons by minimizing the fuel short-circuiting. Low temperature combustion (LTC) may be the next step to further improve emissions and fuel consumption; however, LTC requires unconventional ignition systems. Jet ignition, i.e., the use of prechambers to accelerate the combustion process, turned out to be an effective way to perform LTC. The present work aims at proving the feasibility of adopting passive prechambers in a high-pressure, direct injection, two-stroke engine through non-reactive computational fluid dynamics analyses. The goal of the analysis is the evaluation of the prechamber performance in terms of both scavenging efficiency of burnt gases and fuel/air mixture formation inside the prechamber volume itself, in order to guarantee the mixture ignitability. Two prechamber geometries, featuring different aspect ratios and orifice numbers, were investigated. The analyses were replicated for two different locations of the injection and for three operating conditions of the engine in terms of revolution speed and load. Upon examination of the results, the effectiveness of both prechambers was found to be strongly dependent on the injection setup.
Pre-chamber turbulent jet ignition represents one of the most promising techniques to improve spark ignition engines efficiency and reduce pollutant emissions. This technique consists of igniting the air-fuel mixture in the main combustion chamber by means of several hot turbulent flame jets exiting a pre-chamber. In the present study, the combustion process of a 4-stroke, gasoline SI, PFI engine equipped with a passive pre-chamber has been investigated through three-dimensional CFD (Computational Fluid Dynamics) analysis. A detailed chemistry solver with a reduced reaction mechanism was employed to investigate ignition and flame propagation phenomena. Firstly, the combustion model was validated against experimental data for the baseline engine configuration (i.e., without pre-chamber). Eventually, the validated numerical model allowed for predictive simulations of the pre-chamber-equipped engine. By varying the shape of the pre-chamber body and the size of pre-chamber orifices, different pre-chamber configurations were studied. The influence of the geometrical features on the duration of the combustion process and the pressure trends inside both the pre-chamber and main chamber was assessed and discussed. Since the use of a pre-chamber can extend the air-fuel mixture ignition limits, an additional sensitivity on the air-fuel ratio was carried out, in order to investigate engine performance at lean conditions.
The increasing interest in deep-water floating applications and in wind turbine installations in turbulent flows, is putting vertical-axis wind turbines back again in research agendas. However, due to the lack of activities in past years, the accuracy and robustness of available design tools is much lower than the corresponding ones for horizontal-axis rotors.
Moving from this background, the study presents the development of a hybrid simulation model able to simulate H-type Darrieus turbines with low computational effort and an accuracy higher than that of conventional low-fidelity models. It is based on the coupling of unsteady RANS CFD with the Actuator Line theory to replace the airfoils. The present tool has been implemented within the commercial solver ANSYS® FLUENT® and it is then of practical interest for a large number of potential users. With respect to other examples in the literature, the present approach includes some new findings in the correct manipulation of airfoil polars that notably increased its accuracy. The validation of the model is assessed by means of two different study cases featuring a simplified 1-blade rotor and a real 3-blade turbine, for which both detailed CFD simulations and experiments were available. The model was able to produce accurate results — both in terms of aggregate power production and of flow field description — for turbines with a medium-low chord-to-radius ratio and the tipspeed ratios typical of turbine operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.