In this paper, we report on waveguide-type modified uni-traveling-carrier photodiodes (MUTC-PDs) providing a record high output power level for non-resonant photodiodes in the WR3.4 band. Indium phosphide (InP) based waveguide-type 1.55 µm MUTC-PDs have been fabricated and characterized thoroughly. Maximum output powers of −0.6 dBm and −2.7 dBm were achieved at 240 GHz and 280 GHz, respectively. This has been accomplished by an optimized layer structure and doping profile design that takes transient carrier dynamics into account. An energy-balance model has been developed to study and optimize carrier transport at high optical input intensities. The advantageous THz capabilities of the optimized MUTC layer structure are confirmed by experiments revealing a transit time limited cutoff frequency of 249 GHz and a saturation photocurrent beyond 20 mA in the WR3.4 band. The responsivity for a 16 µm long waveguide-type THz MUTC-PD is found to be 0.25 A/W. In addition, bow-tie antenna integrated waveguide-type MUTC-PDs are fabricated and reported to operate up to 0.7 THz above a received power of −40 dBm.
In this paper, a transmitarray element (TE) is designed for wireless subharmonic injection-locked triple barrier (TB) resonant tunneling diode (RTD) oscillators. It adopts a receiver antenna (RA)-transmitter antenna (TA) structure. The RA is a u-slotted patch antenna, and we use a cubic silicon block at top of this patch, so as to increases the RA gain and radiation e±ciency. A fat monopole structure with a slot-like counterpoise is used as the TA. In this design, the RA can receive 100 GHz subharmonic injection signal (SIS). Meanwhile, the TA will radiate the 300 GHz fundamental oscillation signal (FOS) generated by the TB RTD. Moreover, the TA structure can isolate the 300 GHz FOS coming into the RA but couple the received 100 GHz SIS to the TB RTD, which performs like a filter-antenna. In the simulation, the transmission loss in the TA structure is higher than 15 dB around 300 GHz and only about 1.5 dB around 100 GHz. The gain of RA is 6 dBi with 65% radiation e±ciency at 100 GHz and the gain of TA is 14 dBi at 300 GHz when applying a 1 mm radius silicon lens at the backside of the InP substrate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.