To improve transfection efficiency in Trypanosoma cruzi, we developed a new electroporation protocol and expression vectors which use luciferase and green and red fluorescent proteins as reporter genes. In transient transfections, the electroporation conditions reported here resulted in luciferase expression 100 times higher than the levels obtained with previously described protocols. To verify whether sequences containing different trans-splicing signals influence reporter gene expression, we compared DNA fragments corresponding to 5' untranslated plus intergenic (5' UTR plus Ig) regions from GAPDH, TcP2beta, alpha- and beta- tubulin and amastin genes. Vectors containing sequences derived from the first four genes presented similar efficiencies and resulted in luciferase expression in transiently transfected epimastigotes that was up to 10 times higher than that for a control vector. In contrast, the amastin 5' UTR plus Ig resulted in lower levels of reporter gene expression. We also constructed a vector containing an expression cassette designed to be targeted to the tubulin locus of the parasite.
Identification of novel antigens is essential for developing new diagnostic tests and vaccines. We used DIGE to compare protein expression in amastigote and promastigote forms of Leishmania chagasi. Nine hundred amastigote and promastigote spots were visualized. Five amastigote-specific, 25 promastigote-specific, and 10 proteins shared by the two parasite stages were identified. Furthermore, 41 proteins were identified in the Western blot employing 2-DE and sera from infected dogs. From these proteins, 3 and 38 were reactive with IgM and total IgG, respectively. The proteins recognized by total IgG presented different patterns in terms of their recognition by IgG1 and/or IgG2 isotypes. All the proteins selected by Western blot were mapped for B-cell epitopes. One hundred and eighty peptides were submitted to SPOT synthesis and immunoassay. A total of 25 peptides were shown of interest for serodiagnosis to visceral leishmaniasis. In addition, all proteins identified in this study were mapped for T cell epitopes by using the NetCTL software, and candidates for vaccine development were selected. Therefore, a large-scale screening of L. chagasi proteome was performed to identify new B and T cell epitopes with potential use for developing diagnostic tests and vaccines.
Both immunoreactive proteins and B-cell epitopes of C. gattii genotype VGII that were potentially targeted by a host humoral response were identified. Considering the evolutionary relevance of the identified proteins, we may speculate that they could be used as the initial targets for recombinant protein and peptide synthesis aimed at the development of immunodiagnostic tools for cryptococcosis.
Knowledge of Leishmania virulence is essential for understanding how the contact between the pathogen and host cells can lead to pathogenesis. Virulence in two L. infantum strains was characterized using macrophages and hamsters. Next, we used difference gel electrophoresis (DIGE) and mass spectrometry to identify the differentially expressed proteins. A total of 63 spots were identified corresponding to 36 proteins; 20 were up-regulated, in which 16 had been previously associated with Leishmania virulence. Considering our results and what has been reported before, we suggest the hypothesis that L. infatum virulence could be a result of the increased expression of KMP-11 and metallopeptidase, associated with an improved parasite-host interacting efficiency and degradation of the protective host proteins and peptides, respectively. Other factors are tryparedoxin peroxidase and peroxidoxin, which protect the parasite against the stress response, and 14-3-3 protein-like, which can prolong infected host cell lifetime. Proteins as chaperones and endoribonuclease L-PSP can increase parasite survival. Enolase is able to perform versatile functions in the cell, acting as a chaperone or in the transcription process, or as a plasminogen receptor or in cell migration events. As expected in more invasive cells with high replication rates, energy consumption and protein synthesis are higher, with up-regulation of Rieske iron-sulfur protein precursor, EF-2, S-adenosylhomocysteine, and phosphomannomutase.
Brucella ovis is a major cause of reproductive failure in rams and it is one of the few well-described Brucella species that is not zoonotic. Previous work showed that a B. ovis mutant lacking a species-specific ABC transporter (ΔabcBA) was attenuated in mice and was unable to survive in macrophages. The aim of this study was to evaluate the role of this ABC transporter during intracellular survival of B. ovis. In HeLa cells, B. ovis WT was able to survive and replicate at later time point (48 hpi), whereas an ΔabcBA mutant was attenuated at 24 hpi. The reduced survival of the ΔabcBA mutant was associated with a decreased ability to exclude the lysosomal marker LAMP1 from its vacuolar membrane, suggesting a failure to establish a replicative niche. The ΔabcBA mutant showed a reduced abundance of the Type IV secretion system (T4SS) proteins VirB8 and VirB11 in both rich and acid media, when compared to WT B. ovis. However, mRNA levels of virB1, virB8, hutC, and vjbR were similar in both strains. These results support the notion that the ABC transporter encoded by abcEDCBA or its transported substrate acts at a post-transcriptional level to promote the optimal expression of the B. ovis T4SS within infected host cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.