Software Transactional Memory (STM) allows encapsulating shared-data accesses within transactions, executed with atomicity and isolation guarantees. The assessment of the consistency of a running transaction is performed by the STM layer at specific points of its execution, such as when a read or write access to a shared object occurs, or upon a commit attempt. However, performance and energy efficiency issues may arise when no shared-data read/write operation occurs for a while along a thread running a transaction. In this scenario, the STM layer may not regain control for a considerable amount of time, thus not being able to early detect if such transaction has become inconsistent in the meantime. To tackle this problem we present an STM architecture that, thanks to a lightweight operating system support, is able to perform a fine-grain periodic (hence prompt) revalidation of running transactions. Our proposal targets Linux and x86 systems and has been integrated with the open source TinySTM package. Experimental results with a port of the TPC-C benchmark to STM environments show the effectiveness of our solution.
Programming models for task-based parallelization based on compile-time directives are very effective at uncovering the parallelism available in HPC applications. Despite that, the process of correctly annotating complex applications is error-prone and may hinder the general adoption of these models. In this paper, we target the OmpSs-2 programming model and present a novel toolchain able to detect parallelization errors coming from non-compliant OmpSs-2 applications. Our toolchain verifies the compliance with the OmpSs-2 programming model using local task analysis to deal with each task separately, and structural induction to extend the analysis to the whole program. To improve the effectiveness of our tools, we also introduce some ad-hoc verification annotations, which can be used manually or automatically to disable the analysis of specific code regions. Experiments run on a sample of representative kernels and applications show that our toolchain can be successfully used to verify the parallelization of complex real-world applications.
Memory access tracing is a program analysis technique with many different applications, ranging from architectural simulation to (on-line) data placement optimization and security enforcement. In this article we propose a memory access tracing approach based on static x86 binary instrumentation. Unlike non-selective schemes, which instrument all the memory access instructions, our proposal selectively instruments a subset of those instructions that are the most (or fully) representative of the actual memory access pattern. The selection of the memory access instructions to be instrumented is based on a new method, which clusters instructions on the basis of their compile/link-time observable address expressions and selects representatives of these clusters. This allows for reducing the runtime cost for running instrumented code, while still enabling high accuracy in the determination of memory accesses. The trade-off between overhead and precision of the tracing process is user-tunable, so that it can be set depending on the final objective of memory access tracing (say on-line vs off-line exploitation). Additionally, our approach can track memory access at different granularity (e.g., virtual-pages or cache line-sized buffers), thus having applications in a variety of different contexts. The effectiveness of our proposal is demonstrated via experiments with applications taken from the PARSEC benchmark suite.
Concurrency control protocols based on readvalidation schemes allow transactions which are doomed to abort to still run until a subsequent validation check reveals them as invalid. These late aborts do not favor the reduction of wasted computation and can penalize performance. To counteract this problem, we present an analytical model that predicts the abort probability of transactions handled via read-validation schemes. Our goal is to determine what are the suited points-along a transaction lifetime-to carry out a validation check. This may lead to early aborting doomed transactions, thus saving CPU time. We show how to exploit the abort probability predictions returned by the model in combination with a threshold-based scheme to trigger read-validations. We also show how this approach can definitely improve performance-leading up to 14% better turnaround-as demonstrated by some experiments carried out with a port of the TPC-C benchmark to Software Transactional Memory.
In state-of-the-art Software Transactional Memory (STM) systems, threads carry out the execution of transactions as non-interruptible tasks. Hence, a thread can react to the injection of a higher priority transactional task and take care of its processing only at the end of the currently executed transaction. In this article we pursue a paradigm shift where the execution of an in-memory transaction is carried out as a preemptable task, so that a thread can start processing a higher priority transactional task before finalizing its current transaction. We achieve this goal in an application-transparent manner, by only relying on Operating System facilities we include in our preemptive STM architecture. With our approach we are able to re-evaluate CPU assignment across transactions along a same thread every few tens of microseconds. This is mandatory for an effective priority-aware architecture given the typically finer-grain nature of in-memory transactions compared to their counterpart in database systems. We integrated our preemptive STM architecture with the TinySTM package, and released it as open source. We also provide the results of an experimental assessment of our proposal based on running a port of the TPC-C benchmark to the STM environment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.