The correct interpretation of charcoal records in a palaeoecological context requires the understanding of the sources and transport of charcoal particles. Conventionally, it is assumed that macroscopic charcoal particles are not transported far from fires ( c. 200m). Therefore macroscopic charcoal records are used to reconstruct local fire frequencies. However, the general scarcity of empirical and experimental evidence impedes a thorough check of this assumption. In this study we present the first unambiguous evidence of kilometre-scaled macroscopic charcoal transport in Europe. During the hot summer of 2003 an intensive crown fire occurred in Leuk, central Swiss Alps. It affected 300 ha of forest as well as 10 ha of pasture and fallow land. Litter traps and nets had been located approximately 5 km west and east of the burned area. The downwind site in the east (Jeizinen) recorded a strong charcoal fallout at 5.3 km from the fire edge. The observed charcoal influx of fragments with a size up to 1.3 cm reached average values of 0.144 and 0.098 mm2/Cm2 per fire (or yr) in five traps and two nets, respectively. These values are comparable with charcoal accumulations measured at only c. 50 m from large fires, suggesting that macroscopic charcoal transport does not decay rapidly to zero with increasing distance from the fire. We suggest a long-distance dispersal model for transport of macroscopic charcoal during large fire events. Reconstructions of local fire regimes may be affected by long-distance transport of macroscopic charcoal, although this problem is mitigated by the tendency of most macroscopic charcoal particles to be deposited within very short distances (< 50 m) from the fire edge.
Fundamental uncertainties exist in the study region about the former lowland vegetation at local scales. All existing palaeoecological results are derived from sediments of medium-to large-sized sites (8-5000 ha), which are thought to record mainly regional vegetation in their pollen content. Therefore the very small mire at Balladrum (0.05 ha) was analysed for pollen, plant-macrofossils, and charcoal and the results compared with those of previous studies in the same region. Common regional signals were detected, but also new insights for the tree species Pinus cembra (L.), Abies alba (Mill.) and Castanea sativa (Mill.). Our palaeobotanical data reveal the local dominance of the timberline species P. cembra during the Lateglacial (16500-14250 cal b.p.) at low-altitudes. For A. alba an early presence in the area is suggested by pollen data, corroborating previous high-altitudinal studies indicating the presence of glacial refugia in the region. Occasional findings of C. sativa pollen throughout the Holocene may indicate the local but very rare presence of this species in the Insubrian Southern Alps, in contrast to the conventional
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.