The modern scope of boundary element methods (BEM) for acoustics is reviewed in this paper. Over the last decades the BEM has gained popularity despite suffering from shortcomings, such as fictitious eigenfrequencies and poor scalability due to its dense and frequency-dependent coefficient matrices. Recent research activities have been focused on alleviating these drawbacks to enhance BEM usability across industry and academia. This paper reviews what is commonly known as direct BEM for linear time-harmonic acoustics. After introducing the boundary integral formulation of the Helmholtz equation for interior and exterior acoustic problems, recommendations are given regarding the boundary meshing and treatment of the non-uniqueness problem. It is shown how frequency sweeps and modal analyses can be carried out with BEM. Further extensions for efficient modeling of large-scale problems, including fast BEM and solutions methods, are surveyed. Additionally, this review paper discusses new application areas for modern BEM, such as viscothermal wave propagation, surface contribution analyses, and simulation of periodically arranged structures as found in acoustic metamaterials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.