The understanding of interactions between proteins, carbohydrates, and phenolic compounds is becoming increasingly important in food science, as these interactions might significantly affect the functionality of foods. So far, research has focused predominantly on protein–phenolic or carbohydrate–phenolic interactions, separately, but these components might also form other combinations. In plant-based foods, all three components are highly abundant; phenolic acids are the most important phenolic compound subclass. However, their interactions and influences are not yet fully understood. Especially in cereal products, such as bread, being a nutritional basic in human nutrition, interactions of the mentioned compounds are possible and their characterization seems to be a worthwhile target, as the functionality of each of the components might be affected. This review presents the basics of such interactions, with special emphasis on ferulic acid, as the most abundant phenolic acid in nature, and tries to illustrate the possibility of ternary interactions with regard to dough and bread properties. One of the phenomena assigned to such interactions is so-called dry-baking, which is very often observed in rye bread.
In the last decade, electrochemical oxidation coupled with mass spectrometry has been successfully used for the analysis of metabolic studies. The application focused in this study was to investigate the redox potential of different phenolic compounds such as the very prominent chlorogenic acid. Further, EC/ESI-MS was used as preparation technique for analyzing adduct formation between electrochemically oxidized phenolic compounds and food proteins, e.g., alpha-lactalbumin or peptides derived from a tryptic digestion. In the first step of this approach, two reactant solutions are combined and mixed: one contains the solution of the digested protein, and the other contains the phenolic compound of interest, which was, prior to the mixing process, electrochemically transformed to several oxidation products using a boron-doped diamond working electrode. As a result, a Michael-type addition led to covalent binding of the activated phenolic compounds to reactive protein/peptide side chains. In a follow-up approach, the reaction mix was further separated chromatographically and finally detected using ESI-HRMS. Compound-specific, electrochemical oxidation of phenolic acids was performed successfully, and various oxidation and reaction products with proteins/peptides were observed. Further optimization of the reaction (conditions) is required, as well as structural elucidation concerning the final adducts, which can be phenolic compound oligomers, but even more interestingly, quite complex mixtures of proteins and oxidation products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.