The role of reactive oxygen and nitrogen species in local and systemic defense reactions is well documented. NPR1 and TGA1 are key redox-controlled regulators of systemic acquired resistance in plants. NPR1 monomers interact with the reduced form of TGA1, which targets the activation sequence-1 (as-1) element of the promoter region of defense proteins. Here, we report the effect of the physiological nitric oxide donor S-nitrosoglutathione on the NPR1/TGA1 regulation system in Arabidopsis thaliana. Using the biotin switch method, we demonstrate that both NPR1 and TGA1 are S-nitrosylated after treatment with S-nitrosoglutathione. Mass spectrometry analyses revealed that the Cys residues 260 and 266 of TGA1 are S-nitrosylated and S-glutathionylated even at GSNO concentrations in the low micromolar range. Furthermore, we showed that S-nitrosoglutathione protects TGA1 from oxygen-mediated modifications and enhances the DNA binding activity of TGA1 to the as-1 element in the presence of NPR1. In addition, we observed that the translocation of NPR1 into the nucleus is promoted by nitric oxide. Taken together, our results suggest that nitric oxide is a redox regulator of the NPR1/TGA1 system and that they underline the importance of nitric oxide in the plant defense response.
There is increasing evidence that nitric oxide (NO), which was first identified as a unique diffusible molecular messenger in animals, plays an important role in diverse physiological processes in plants. Recent progress that has deepened our understanding of NO signalling functions in plants, with special emphasis on defence signalling, is discussed here. Several studies, based on plants with altered NO-levels, have recently provided genetic evidence for the importance of NO in gene induction. For a general overview of which gene expression levels are altered by NO, two studies, involving large-scale transcriptional analyses of Arabidopsis thaliana using custom-made or commercial DNA-microarrays, were performed. Furthermore, a comprehensive transcript profiling by cDNA-amplification fragment length polymorphism (AFLP) revealed a number of Arabidopsis thaliana genes that are involved in signal transduction, disease resistance and stress response, photosynthesis, cellular transport, and basic metabolism. In addition, NO affects the expression of numerous genes in other plant species such as tobacco or soybean. The NO-dependent intracellular signalling pathway(s) that lead to the activation or suppression of these genes have not yet been defined. Several lines of evidence point to an interrelationship between NO and salicylic acid (SA) in plant defence. Recent evidence suggests that NO also plays a role in the wounding/jasmonic acid (JA) signalling pathway. NO donors affect both wounding-induced H2O2 synthesis and wounding- or JA-induced expression of defence genes. One of the major challenges ahead is to determine how the correct specific response is evoked, despite shared use of the NO signal and, in some cases, its downstream second messengers.
Due to its high reactivity and its ability to diffuse and permeate the cell membrane, nitric oxide (NO) and its exchangeable redox-activated species are unique biological messengers in animals and in plants. Although an increasing number of reports indicate that NO is an essential molecule in several physiological processes, there is not a clear picture of its method of action. Studies on the transcriptional changes induced by NO permitted identification of genes involved in different functional processes such as signal transduction, defence and cell death, transport, basic metabolism, and reactive oxygen species (ROS) production and degradation. The co-expression of these genes can be explained by the co-operation of a set of transcription factors that bind a common region in the promoter of the regulated genes. The present report describes the search for a common transcription factor-binding site (TFBS) in promoter regions of NO-regulated genes, based on microarray analyses. Using Genomatix Gene2Promotor and MatInspector, eight families of TFBSs were found to occur at least 15% more often in the promoter regions of the responsive genes in comparison with the promoter regions of 28,447 Arabidopsis control genes. Most of these TFBSs, such as ocs element-like sequences and WRKY, have already been reported to be involved in particular stress responses. Furthermore, the promoter regions of genes involved in jasmonic acid (JA) biosynthesis were analysed for a common TFBS module, since some genes responsible for JA biosynthesis are induced by NO, and an interaction between NO and JA signalling has already been described.
Key Points The hepcidin inhibitor NOX-H94, a structured mirror-image RNA oligonucleotide, and its in vitro and in vivo characterization are described. First published hepcidin inhibitor that entered clinical trials for the treatment of anemia due to functional iron deficiency.
Background: An increased glucagon/insulin ratio is known to contribute to hyperglycemia in diabetes.Results: NOX-G15, a mirror-image mixed DNA/RNA glucagon-neutralizing aptamer, was identified. It improved glucose tolerance in models of type 1 and 2 diabetes.Conclusion: NOX-G15 may be useful for treatment of type 1 and 2 diabetes.Significance: The new therapeutic candidate may help to reduce insulin need in diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.