Parameterized verification of temporal properties is an active research area, being extremely relevant for model-based design of complex systems. In this paper, we focus on parameter synthesis for stochastic models, looking for regions of the parameter space where the model satisfies a linear time specification with probability greater (or less) than a given threshold. We propose a statistical approach relying on simulation and leveraging a machine learning method based on Gaussian Processes for statistical parametric verification, namely Smoothed Model Checking. By injecting active learning ideas, we obtain an efficient synthesis routine which is able to identify the target regions with statistical guarantees. Our approach, which is implemented in Python, scales better than existing ones with respect to state space of the model and number of parameters. It is applicable to linear time specifications with time constraints and to more complex stochastic models than Markov Chains.
We present MoonLight, a tool for monitoring temporal and spatio-temporal properties of mobile and spatially distributed cyberphysical systems (CPS). In the proposed framework, space is represented as a weighted graph, describing the topological configurations in which the single CPS entities (nodes of the graph) are arranged. Both nodes and edges have attributes modelling physical and logical quantities that can change in time. MoonLight is implemented in Java and supports the monitoring of Spatio-Temporal Reach and Escape Logic (STREL) introduced in [6]. MoonLight can be used as a standalone command line tool, as a Java API, or via Matlab ™ interface. We provide here some examples using the Matlab ™ interface and we evaluate the tool performance also by comparing with other tools specialized in monitoring only temporal properties.
We consider the problem of mining signal temporal logical requirements from a dataset of regular (good) and anomalous (bad) trajectories of a dynamical system. We assume the training set to be labeled by human experts and that we have access only to a limited amount of data, typically noisy. We provide a systematic approach to synthesize both the syntactical structure and the parameters of the temporal logic formula using a two-steps procedure: first, we leverage a novel evolutionary algorithm for learning the structure of the formula; second, we perform the parameter synthesis operating on the statistical emulation of the average robustness for a candidate formula w.r.t. its parameters. We compare our results with our previous work [9] and with a recently proposed decision-tree [8] based method. We present experimental results on two case studies: an anomalous trajectory detection problem of a naval surveillance system and the characterization of an Ineffective Respiratory effort, showing the usefulness of our work.
Abstract. Search-based testing is widely used to find bugs in models of complex Cyber-Physical Systems. Latest research efforts have improved this approach by casting it as a falsification procedure of formally specified temporal properties, exploiting the robustness semantics of Signal Temporal Logic. The scaling of this approach to highly complex engineering systems requires efficient falsification procedures, which should be applicable also to black box models. Falsification is also exacerbated by the fact that inputs are often time-dependent functions. We tackle the falsification of formal properties of complex black box models of CyberPhysical Systems, leveraging machine learning techniques from the area of Active Learning. Tailoring these techniques to the falsification problem with time-dependent, functional inputs, we show a considerable gain in computational effort, by reducing the number of model simulations needed. The goodness of the proposed approach is discussed on a challenging industrial-level benchmark from automotive.
We introduce a new logic called Signal Convolution Logic (SCL) that combines temporal logic with convolutional filters from digital signal processing. SCL enables to reason about the percentage of time a formula is satisfied in a bounded interval. We demonstrate that this new logic is a suitable formalism to effectively express non-functional requirements in Cyber-Physical Systems displaying noisy and irregular behaviours. We define both a qualitative and quantitative semantics for it, providing an efficient monitoring procedure. Finally, we prove SCL at work to monitor the artificial pancreas controllers that are employed to automate the delivery of insulin for patients with type-1 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.