cis-Diamminedichloroplatinum(II) (CDDP) is an important chemotherapeutic agent used in the treatment of a wide variety of solid tumors. We have recently shown that aquated forms of cisplatin (aqua-Pt) rapidly accumulate in K562 and GLC4 cultured cells, in comparison to CDDP. Thus, when cells are incubated with aquated forms of cisplatin a gradient of concentration is observed after a short time, approximately 40 min, with an intracellular concentration of aqua-Pt of 20-30 times higher than that of extracellular aqua-Pt. The same gradient of concentration is observed when cells are incubated with CDDP but it takes a longer time, i.e., about 24 h. Therefore, the question arises as to the identity of the intracellular sites of accumulation of aqua-Pt. Using several agents to modulate membrane potential, acidic compartment pH and/or ATP level, we obtained evidence that aqua-Pt may accumulate rapidly inside mitochondria as this accumulation is energy- and membrane-potential-dependent. However, aqua-Pt complexes are not characterized by a delocalized charge and a lipophilic character that would permit their movement through the inner membrane. Therefore, it is suggested that intracellular aqua-Pt reacts rapidly with glutathione with the resultant complex being transported inside the mitochondria via one of the known glutathione transporters, i.e., dicarboxylate and/or 2-oxoglutarate transporters present in the inner membrane.
Resistance to cisplatin [cis-diamminedichloroplatinum(II), CDDP] chemotherapy is a major problem in the clinic. Understanding the molecular basis of the intracellular accumulation of CDDP and other platinum-based anticancer drugs is of importance in delineating the mechanism of resistance to these clinically important therapies. Different molecular mechanisms may coexist, but defective uptake of CDDP is one of the most consistently identified characteristics of cells selected for CDDP resistance. We have studied the impact of intracellular chloride concentration on platinum-based compound accumulation in the human GLC4, GLC4/CDDP, and K562 tumor cell lines. We show that (1) a decrease of intracellular chloride concentration yielded an increase of CDDP accumulation and vice versa and (2) the intracellular chloride concentration in GLC4/CDDP cells is higher than in sensitive cells, whereas CDDP accumulation shows the opposite behavior. The identification of chloride as a critical determinant of CDDP intracellular accumulation and the molecular mechanisms by which CDDP-resistant cells modulate chloride concentration may allow alternative therapeutic approaches. Our findings indicate that increase of intracellular chloride concentration may be a major determinant of CDDP resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.