Dictyostelium discoideum expresses EDTA-sensitive cell-cell adhesion sites soon after the initiation of development, and a Ca 2؉ -binding protein of M r 24,000 (designated DdCAD-1) has been implicated in this type of adhesiveness. We have previously purified DdCAD-1 to homogeneity and characterized its cell binding activity
The Ca
2+-dependent cell-cell adhesion molecule DdCAD-1, encoded by the cadA gene of Dictyostelium discoideum, is synthesized at the onset of development as a soluble protein and then transported to the plasma membrane by contractile vacuoles. Calmodulin associates with contractile vacuoles in a Ca 2+ -dependent manner, and co-localizes with DdCAD-1 on the surface of contractile vacuoles. Bioinformatics analysis revealed multiple calmodulin-binding motifs in DdCAD-1. Co-immunoprecipitation and pull-down studies showed that only Ca 2+ -bound calmodulin was able to bind DdCAD-1. Structural integrity of DdCAD-1, but not the native conformation, was required for its interaction with calmodulin. To investigate the role of calmodulin in the import of DdCAD-1 into contractile vacuoles, an in vitro import assay consisting of contractile vacuoles derived from cadA À cells and recombinant proteins was employed. Prior stripping of the bound calmodulin from contractile vacuoles by EGTA impaired import of DdCAD-1, which was restored by addition of exogenous calmodulin. The calmodulin antagonists W-7 and compound 48/80 blocked the binding of calmodulin onto stripped contractile vacuoles, and inhibited the import of DdCAD-1. Together, the data show that calmodulin forms a complex with DdCAD-1 and promotes the docking and import of DdCAD-1 into contractile vacuoles.
Structured digital abstractCaM physically interacts with DdCAD-1 by pull down (View Interaction: 1, 2) DdCAD-1 binds to CaM by far western blotting (View interaction)DdCAD-1 physically interacts with CaM by anti bait coimmunoprecipitation (View interaction)
Soon after the initiation of the developmental cycle of Dictyostelium discoideum, cells acquire EDTA-sensitive cell-cell binding sites mediated by the glycoprotein gp24. Cells at the aggregation stage display a second type of cell adhesion site, the EDTA-resistant cell-cell binding sites, mediated by the glycoprotein gp80. The gene encoding gp80 is first turned on to a low basal level of expression in the preaggregation stage. At the onset of the aggregation stage, cells produce pulses of low levels of cAMP, which greatly augment the expression of gp80. To investigate the role of cell-cell adhesion in the regulation of gp80 expression, cells were developed in the presence of EDTA or carnitine to block the EDTA-sensitive cell binding sites. Alternatively, cell cohesion was disrupted by shaking low-density cultures at high shearing forces. In all three instances, gp80 was expressed at a substantially reduced level. In addition, exogenous cAMP pulses, which normally were capable of stimulating a precocious and enhanced expression of gp80, failed to restore the high level of gp80 expression. However, if the formation of cell-cell contact was permitted, exogenous cAMP pulses were able to rescue the expression of gp80 even when the cAMP signal relay was blocked. These results indicate that previous cell-cell contact, provided by the EDTA-sensitive binding sites, is required for the activation of the cAMP-mediated signal transduction pathway producing high levels of gp80 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.