This study presents a modular-based implementation of augmented reality to provide an immersive experience in learning or teaching the planning phase, control system, and machining parameters of a fully automated work cell. The architecture of the system consists of three code modules that can operate independently or combined to create a complete system that is able to guide engineers from the layout planning phase to the prototyping of the final product. The layout planning module determines the best possible arrangement in a layout for the placement of various machines, in this case a conveyor belt for transportation, a robot arm for pick-and-place operations, and a computer numerical control milling machine to generate the final prototype. The robotic arm module simulates the pick-and-place operation offline from the conveyor belt to a computer numerical control (CNC) machine utilising collision detection and inverse kinematics. Finally, the CNC module performs virtual machining based on the Uniform Space Decomposition method and axis aligned bounding box collision detection. The conducted case study revealed that given the situation, a semi-circle shaped arrangement is desirable, whereas the pick-and-place system and the final generated G-code produced the highest deviation of 3.83 mm and 5.8 mm respectively.
The adoption of virtual reality in manufacturing system simulation had proved its effectiveness in bridging up to the gap between different areas of expertise, especially in product design and manufacturing. Virtual reality had enclosed human–machine interface by enabling the user to be immersed into the virtual environment and experience real-time interaction with the virtual objects. In this article, an implementation of virtual reality in cellular manufacturing system simulation is presented. By utilizing the features of visualization and real-time interaction of virtual reality technology, the manufacturing process of a product had been visualized while the real-time control on the product traveling path based on the user’s input was performed and the corresponding activities that related to the change of traveling path had been predicted in the virtual environment. Through the study, simulation of the manufacturing system in virtual reality showed its potential as a powerful decision support system in process planning and scheduling. Various process planning and schedules can be planned through the virtual environment, while the product traveling distance can be obtained from the developed system.
Scientific Reports 6: Article number: 27380; published online: 07 June 2016; updated: 25 August 2016 In this Article, Hwa Jen Yap, Siti Zawiah Md Dawal, S. Ramesh and Sin Ye Phoon are incorrectly affiliated to ‘Graduate School of Media Design, Keio University, 4-1-1, Hiyoshi, Kohoku, Yokohama, 223-8526, Japan’.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.