The rate and efficiency of iron generation in a bench-scale electrocoagulation (EC) system was investigated when variations were made to operating voltage, cathode material and electrolyte composition. Two electrolytes were tested, one with organic compounds (naphthalene, acenaphthene and 4-nonylphenol) and one without. While aromatic structures often make good corrosion inhibitors, in this case they had no discernible effect. This is a positive indicator that EC systems will not have adverse effects when treating wastewaters associated with oil and gas production. Using a stainless steel cathode rather than an aluminium one resulted in 35% more production of iron at the anode per volt per minute; it also resulted in greater iron production given equivalent quantities of power. This occurred because the rate-limiting hydrogen evolution reaction at the cathode occurs more quickly on iron than on aluminium. It was also observed that the EC system (using either cathode) produced more iron per unit power when operated at lower voltages. At lower voltages, the corrosion that occurred spontaneously in the absence of an applied current contributed more significantly to the total amount of iron released. This research suggests that it is more efficient to design EC systems using iron-based cathodes rather than aluminium ones. It also indicates that it is more energy efficient to use more electrodes at low power, rather than fewer electrodes at high power.
A review of the literature published in 2009 on topics relating to water reclamation and reuse is presented. This review is divided into the following sections: (1) General: extent of reuse, research needs, guidelines and monitoring, and health effects, (2) Treatment technologies: integrated process design, electrodialysis/electrodeionization, membrane treatment, wetlands, bioremediation, industrial wastewater treatment, disinfection, and (3) Planning and Management: public acceptance & education, economics and pricing, water quality planning and management and project/case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.