In recent years, the instability of hybrid organic‐inorganic halide perovskite solar cells (PSCs) has been an important challenge. The issue of the destruction as well as a carrier density stability of the perovskite must be addressed to simultaneously achieve the long lifetime of PSCs and acceptable conversion efficiency. Present study aims to address these issues by using all‐inorganic CsPbBr3 perovskite as a light absorber material. Through a simulation process, the perovskite thickness was optimized yielding the highest power conversion efficiency (PCE) of a device reaching 4.04 %. After storage for 3 months at room temperature with a humidity of 20 % and under illumination of AM 1.5 G, only 35 % loss in PCE was observed, indicating a promising stability of the fabricated CsPbBr3‐based devise.
All-inorganic cesium lead bromide (CsPbBr 3) perovskite nanoparticles and ZnO nanoparticles were synthesized. The structure, optical properties and the morphology of synthesized nanoparticles were fully characterized using X-ray diffraction (XRD), UV/Vis spectroscopy and transition electron microscopy (TEM). A comparative study was carried out to investigate the antibacterial activity of ZnO and CsPbBr 3 perovskite nanoparticles toward Gram-negative, rod-shaped Escherichia coli O157:H7 bacteria cells. Experimental results showed that the antibacterial activity of CsPbBr 3 nanoparticles was better than that of ZnO nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.