The performance of turbochargers is heavily influenced by heat transfer. Conventional investigations are commonly performed under adiabatic assumptions and are based on the first law of thermodynamics, which is insufficient for perceiving the aerothermodynamic performance of turbochargers. This study aims to experimentally investigate the non-adiabatic performance of an automotive turbocharger turbine through energy and exergy analysis, considering heat transfer impacts. It is achieved based on experimental measurements and by implementing a novel innovative power-based approach to extract the amount of heat transfer. The turbocharger is measured on a hot gas test bench in both diabatic and adiabatic conditions. Consequently, by carrying out energy and exergy balances, the amount of lost available work due to heat transfer and internal irreversibilities within the turbine is quantified. The study allows researchers to achieve a deep understanding of the impacts of heat transfer on the aerothermodynamic performance of turbochargers, considering both the first and second laws of thermodynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.