This study was motivated by the difficulties to assess the aerothermodynamic effects of heat transfer on the performance of turbocharger turbine by only looking at the global performance parameters, and by the lack of efforts to quantify the physical mechanisms associated with heat transfer. In this study, we aimed to investigate the sensitivity of performance to heat loss, to quantify the aerothermodynamic mechanisms associated with heat transfer and to study the available energy utilization by a turbocharger turbine. Exergy analysis was performed based on the predicted three-dimensional flow field by detached eddy simulation (DES). Our study showed that at a specified mass flow rate, (1) pressure ratio drop is less sensitive to heat loss as compared to turbine power reduction, (2) turbine power drop due to heat loss is relatively insignificant as compared to the exergy lost via heat transfer and thermal irreversibilities, and (3) a single-stage turbine is not an effective machine to harvest all the available exhaust energy in the system.
This research was primary motivated by limited efforts to understand the effects of secondary flow and flow unsteadiness on the heat transfer and the performance of a turbocharger turbine subjected to pulsatile flow. In this study, we aimed to investigate the influence of exhaust manifold on the flow physics and the performance of its downstream components, including the effects on heat transfer, under engine-like pulsatile flow conditions. Based on the predicted results by detached eddy simulation (DES), qualitative and quantitative flow fields analyses in the scroll and the rotor's inlet were performed, in addition to the quantification of turbine performance by using the flow exergy methodology. With the specified geometry configuration and exhaust valve strategy, our study showed that (1) the exhaust manifold influences the flow field and the heat transfer in the scroll significantly and (2) although the exhaust gas blow-down disturbs the relative flow angle at rotor inlet, the consequence on the turbine power is relatively small.
Inconsistent results about heat transfer effects on performance and poor understanding of the aerothermodynamics loss mechanisms related to heat transfer in turbocharger turbine motivated this study. This study aimed to investigate the sensitivity of performance to heat loss and to quantify loss mechanisms associated with heat transfer in a turbine by using exergy analysis. A hybrid simulation methodology, i.e. Detached Eddy Simulation (DES) was used to compute the three-dimensional flow field of a turbine operating under hot gas stand continuous flow condition. Principal findings of this study were 1) Pressure ratio is less sensitive to heat loss as compared to turbine power, 2) Turbine power drop due to heat loss is relatively insignificant as compared to the exergy lost by heat transport and exergy destroyed by thermal irreversibilities, and 3) Assuming the most ideal isentropic gas expansion, more than 80% of the inflow exergy is unutilized in the investigated turbine system.
Under on-engine operating conditions, a turbocharger turbine is subject to a pulsating flow and, consequently, experiences deviations from the performance measured in gas-stand flow conditions. Furthermore, due to the high exhaust gases temperatures, heat transfer further deteriorates the turbine performance. The complex interaction of the aerothermodynamic mechanisms occurring inside the hot-side, and consequently the turbine behavior, is largely affected by the shape of the pulse, which can be parameterized through three parameters: pulse amplitude, frequency, and temporal gradient. This paper investigates the hot-side system response to the pulse amplitude via Detached Eddy Simulations (DES) of a turbocharger radial turbine system including exhaust manifold. Firstly, the computational model is validated against experimental data obtained in gas-stand flow conditions. Then, two different mass flow pulses, characterized by a pulse amplitude difference of 5%, are compared. An exergy-based post-processing approach shows the beneficial effects of increasing the pulse amplitude. An improvement of the turbine power by 1.3%, despite the increment of the heat transfer and total internal irreversibilities by 5.8% and 3.4\%, respectively, is reported. As a result of the higher maximum speeds, internal losses by viscous friction are responsible for the growth of the total internal irreversibilities as pulse amplitude increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.