International audienceRock deformation experiments are performed on fault gouge fabricated from ‘Maryland Diabase’ rock powder to investigate the transition from dominant brittle to dominant viscous behaviour. At the imposed strain rates of View the MathML sourceγ˙=3·10−5−3·10−6 s−1, the transition is observed in the temperature range of (600 °C < T < 800 °C) at confining pressures of (0.5 GPa ≤ Pc ≤ 1.5 GPa). The transition thereby takes place by a switch from brittle fracturing and cataclastic flow to viscous dissolution-precipitation creep and grain boundary sliding. Mineral reactions and resulting grain size refinement by nucleation are observed to be critical processes for the switch to viscous deformation, i.e., grain size sensitive creep. In the transitional regime, the mechanical response of the sample is a mixed-mode between brittle and viscous rheology and microstructures associated with both brittle and viscous deformation are observed. As grain size reduction by reaction and nucleation is a time dependent process, the brittle-viscous transition is not only a function of T but to a large extent also of microstructural evolution
Sub-Second X-Ray Tomographic Microscopy coalescence in volcanological material. With the integration of a rheometer, information on bubble deformation could also be gained. In the near future, upgrades of most large-scale synchrotron radiation facilities to diffraction-limited storage rings will create new opportunities, for instance through sub-second tomographic imaging capabilities at sub-micron length scales.
Amorphous materials are frequently observed in natural and experimentally produced fault rocks. Their common occurrence suggests that amorphous materials are of importance to fault zone dynamics. However, little is known about the physico-chemical impact of amorphous materials on fault rheology. Here we present deformation experiments on mafic fault rock, where amorphous material forms due to intense mechanical wear during the experiments. The experiments are run at temperatures from 300 to 600 • C, confining pressures of 0.5 or 1.0 GPa, and at constant displacement rates of (ḋ ax ) 2 ⋅10 − 7 , 2 ⋅10 − 8 or 2 ⋅10 − 9 ms − 1 , resulting in bulk strain rates (γ) of ≈3 ⋅10 − 4 , 3 ⋅10 − 5 and 3 ⋅10 − 6 s − 1 . At these conditions, the mafic rock material undergoes intense brittle deformation and cataclastic flow, but sample strength significantly decreases with increasing temperaturesa feature commonly attributed to viscous deformation processes. Microstructural analyses show that after an initial stage of homogeneous cataclastic flow, strain localizes into narrow (2-10 μm wide) ultra-cataclastic bands that evolve into amorphous shear bands. With the data presented in this research paper, we argue that the temperature sensitivity recorded in the mechanical data is caused by viscous deformation of the amorphous material. We suggest that with the formation of amorphous materials during brittle deformation, fault rheology becomes significantly temperaturesensitive. This has important implications for our understanding of fault strength and weakening due to the presence of amorphous materials. In addition, weak material along faults will lead to stress concentrations that may trigger seismic rupture.
Abstract. It is widely observed that mafic rocks are able to accommodate high strains by viscous flow. Yet, a number of questions concerning the exact nature of the involved deformation mechanisms continue to be debated. In this contribution, rock deformation experiments on four different water-added plagioclase-pyroxene mixtures are presented: (i) plagioclase(An60-70)-clinopyroxene-orthopyroxene, (ii) plagioclase(An60)-diopside, (iii) plagioclase(An60)-enstatite, and (iv) plagioclase(An01)-enstatite. Samples were deformed in general shear at strain rates of 3 × 10 −5 to 3 × 10 −6 s −1 , 800 • C, and confining pressure of 1.0 or 1.5 GPa. Results indicate that dissolution-precipitation creep (DPC) and grain boundary sliding (GBS) are the dominant deformation mechanisms and operate simultaneously. Coinciding with sample deformation, syn-kinematic mineral reactions yield abundant nucleation of new grains; the resulting intense grain size reduction is considered crucial for the activity of DPC and GBS. In high strain zones dominated by plagioclase, a weak, nonrandom, and geometrically consistent crystallographic preferred orientation (CPO) is observed. Usually, a CPO is considered a consequence of dislocation creep, but the experiments presented here demonstrate that a CPO can develop during DPC and GBS. This study provides new evidence for the importance of DPC and GBS in mid-crustal shear zones within mafic rocks, which has important implications for understanding and modeling mid-crustal rheology and flow.
Catastrophic failure in brittle, porous materials initiates when smaller-scale fractures localise along an emergent fault zone in a transition from stable crack growth to dynamic rupture. Due to the rapid nature of this critical transition, the precise micro-mechanisms involved are poorly understood and difficult to image directly. Here, we observe these micro-mechanisms directly by controlling the microcracking rate to slow down the transition in a unique rock deformation experiment that combines acoustic monitoring (sound) with contemporaneous in-situ x-ray imaging (vision) of the microstructure. We find seismic amplitude is not always correlated with local imaged strain; large local strain often occurs with small acoustic emissions, and vice versa. Local strain is predominantly aseismic, explained in part by grain/crack rotation along an emergent shear zone, and the shear fracture energy calculated from local dilation and shear strain on the fault is half of that inferred from the bulk deformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.