Internet of Things (IoT) devices and applications are being deployed in our homes and workplaces and in our daily lives. These devices often rely on continuous data collection and machine learning models for analytics and actuations. However, this approach introduces a number of privacy and efficiency challenges, as the service operator can perform arbitrary inferences on the available data. Recently, advances in edge processing have paved the way for more efficient, and private, data processing at the source for simple tasks and lighter models, though they remain a challenge for larger, and more complicated models. In this paper, we present a hybrid approach for breaking down large, complex deep neural networks for cooperative, privacy-preserving analytics. To this end, instead of performing the whole operation on the cloud, we let an IoT device to run the initial layers of the neural network, and then send the output to the cloud to feed the remaining layers and produce the final result. We manipulate the model with Siamese fine-tuning and propose a noise addition mechanism to ensure that the output of the user's device contains no extra information except what is necessary for the main task, preventing any secondary inference on the data. We then evaluate the privacy benefits of this approach based on the information exposed to the cloud service. We also asses the local inference cost of different layers on a modern handset. Our evaluations show that by using Siamese fine-tuning and at a small processing cost, we can greatly reduce the level of unnecessary, potentially sensitive information in the personal data, and thus achieving the desired trade-off between utility, privacy and performance.
Graph Neural Networks (GNNs) have become a popular tool for learning on graphs, but their widespread use raises privacy concerns as graph data can contain personal or sensitive information. Differentially private GNN models have been recently proposed to preserve privacy while still allowing for effective learning over graph-structured datasets. However, achieving an ideal balance between accuracy and privacy in GNNs remains challenging due to the intrinsic structural connectivity of graphs. In this paper, we propose a new differentially private GNN called ProGAP that uses a progressive training scheme to improve such accuracy-privacy trade-offs. Combined with the aggregation perturbation technique to ensure differential privacy, ProGAP splits a GNN into a sequence of overlapping submodels that are trained progressively, expanding from the first submodel to the complete model. Specifically, each submodel is trained over the privately aggregated node embeddings learned and cached by the previous submodels, leading to an increased expressive power compared to previous approaches while limiting the incurred privacy costs. We formally prove that ProGAP ensures edge-level and node-level privacy guarantees for both training and inference stages, and evaluate its performance on benchmark graph datasets. Experimental results demonstrate that ProGAP can achieve up to 5-10% higher accuracy than existing state-of-the-art differentially private GNNs.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.