How cytokine‐driven changes in chromatin topology are converted into gene regulatory circuits during inflammation still remains unclear. Here, we show that interleukin (IL)‐1α induces acute and widespread changes in chromatin accessibility via the TAK1 kinase and NF‐κB at regions that are highly enriched for inflammatory disease‐relevant SNPs. Two enhancers in the extended chemokine locus on human chromosome 4 regulate the IL‐1α‐inducible IL8 and CXCL1‐3 genes. Both enhancers engage in dynamic spatial interactions with gene promoters in an IL‐1α/TAK1‐inducible manner. Microdeletions of p65‐binding sites in either of the two enhancers impair NF‐κB recruitment, suppress activation and biallelic transcription of the IL8/CXCL2 genes, and reshuffle higher‐order chromatin interactions as judged by i4C interactome profiles. Notably, these findings support a dominant role of the IL8 “master” enhancer in the regulation of sustained IL‐1α signaling, as well as for IL‐8 and IL‐6 secretion. CRISPR‐guided transactivation of the IL8 locus or cross‐TAD regulation by TNFα‐responsive enhancers in a different model locus supports the existence of complex enhancer hierarchies in response to cytokine stimulation that prime and orchestrate proinflammatory chromatin responses downstream of NF‐κB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.