Processes like cellular senescence are characterized by complex events giving rise to heterogeneous cell populations. However, the early molecular events driving this cascade remain elusive. We hypothesized that senescence entry is triggered by an early disruption of the cells' three-dimensional (3D) genome organization. To test this, we combined Hi-C, single-cell and population transcriptomics, imaging, and in silico modeling of three distinct cells types entering senescence. Genes involved in DNA conformation maintenance are suppressed upon senescence entry across all cell types. We show that nuclear depletion of the abundant HMGB2 protein occurs early on the path to senescence and coincides with the dramatic spatial clustering of CTCF. Knocking down HMGB2 suffices for senescence-induced CTCF clustering and for loop reshuffling, while ectopically expressing HMGB2 rescues these effects. Our data suggest that HMGB2-mediated genomic reorganization constitutes a primer for the ensuing senescent program.
Spatial organization and gene expression of mammalian chromosomes are maintained and regulated in conjunction with cell cycle progression. This is perturbed once cells enter senescence and the highly abundant HMGB1 protein is depleted from nuclei to act as an extracellular proinflammatory stimulus. Despite its physiological importance, we know little about the positioning of HMGB1 on chromatin and its nuclear roles. To address this, we mapped HMGB1 binding genome-wide in two primary cell lines. We integrated ChIP-seq and Hi-C with graph theory to uncover clustering of HMGB1-marked topological domains that harbor genes involved in paracrine senescence. Using simplified Cross-Linking and Immuno-Precipitation and functional tests, we show that HMGB1 is also a bona fide RNA-binding protein (RBP) binding hundreds of mRNAs. It presents an interactome rich in RBPs implicated in senescence regulation. The mRNAs of many of these RBPs are directly bound by HMGB1 and regulate availability of SASPrelevant transcripts. Our findings reveal a broader than hitherto assumed role for HMGB1 in coordinating chromatin folding and RNA homeostasis as part of a regulatory loop controlling cellautonomous and paracrine senescence.
Highlights d yylncRNAs are divergently expressed with transcripts from cell fate regulatory gene loci d yylncT is a yylncRNA encoded by and physically associated with the active T locus d yylncT binds DNMT3B and affects DNA methylation at the active T locus d yylncT is essential for mesoderm commitment of human PSCs
How cytokine‐driven changes in chromatin topology are converted into gene regulatory circuits during inflammation still remains unclear. Here, we show that interleukin (IL)‐1α induces acute and widespread changes in chromatin accessibility via the TAK1 kinase and NF‐κB at regions that are highly enriched for inflammatory disease‐relevant SNPs. Two enhancers in the extended chemokine locus on human chromosome 4 regulate the IL‐1α‐inducible IL8 and CXCL1‐3 genes. Both enhancers engage in dynamic spatial interactions with gene promoters in an IL‐1α/TAK1‐inducible manner. Microdeletions of p65‐binding sites in either of the two enhancers impair NF‐κB recruitment, suppress activation and biallelic transcription of the IL8/CXCL2 genes, and reshuffle higher‐order chromatin interactions as judged by i4C interactome profiles. Notably, these findings support a dominant role of the IL8 “master” enhancer in the regulation of sustained IL‐1α signaling, as well as for IL‐8 and IL‐6 secretion. CRISPR‐guided transactivation of the IL8 locus or cross‐TAD regulation by TNFα‐responsive enhancers in a different model locus supports the existence of complex enhancer hierarchies in response to cytokine stimulation that prime and orchestrate proinflammatory chromatin responses downstream of NF‐κB.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.