Decision makers and forecasters often receive advice from different sources including human experts and statistical methods. This research examines, in the context of stock price forecasting, how the apparent source of the advice affects the attention that is paid to it when the mode of delivery of the advice is identical for both sources. In Study 1, two groups of participants were given the same advised point and interval forecasts. One group was told that these were the advice of a human expert and the other that they were generated by a statistical forecasting method. The participants were then asked to adjust forecasts they had previously made in light of this advice. While in both cases the advice led to improved point forecast accuracy and better calibration of the prediction intervals, the advice which apparently emanated from a statistical method was discounted much more severely. In Study 2, participants were provided with advice from two sources. When the participants were told that both sources were either human experts or both were statistical methods, the apparent statistical-based advice had the same influence on the adjusted estimates as the advice that appeared to come from a human expert. However when the apparent sources of advice were different, much greater attention was paid to the advice that apparently came from a human expert. Theories of advice utilization are used to identify why the advice of a human expert is likely to be preferred to advice from a statistical method.
A survey of 124 users of externally produced financial and economic forecasts in Turkey investigated their expectations and perceptions of forecast quality and their reasons for judgmentally adjusting forecasts. Expectations and quality perceptions mainly related to the timeliness of forecasts, the provision of a clear justifiable rationale and accuracy. Cost was less important. Forecasts were frequently adjusted when they lacked a justifiable explanation, when the user felt they could integrate their knowledge into the forecast, or where the user perceived a need to take responsibility for the forecast. Forecasts were less frequently adjusted when they came from a well-known source and were based on sound explanations and assumptions. The presence of feedback on accuracy reduced the influence of these factors. The seniority and experience of users had little effect on their attitudes or propensity to make adjustments. Copyright © 2008 John Wiley & Sons, Ltd.
Two experiments investigated whether individuals' forecasts of the demand for products and a stock market index assuming a best or worst case scenario depend on whether they have seen a single scenario in isolation or whether they have also seen a second scenario presenting an opposing view of the future. Normatively, scenarios should be regarded as belonging to different plausible future worlds so that the judged implications of one scenario should not be affected when other scenarios are available. However, the results provided evidence of contrast effects in that the presentation of a second “opposite” scenario led to more extreme forecasts consistent with the polarity of the original scenario. In addition, people were more confident about their forecasts based on a given scenario when two opposing scenarios were available. We examine the implications of our findings for the elicitation of point forecasts and judgmental prediction intervals and the biases that are often associated with them.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.