Various types of information embedded in the built environment or buildings can be measured by using methods such as entropy to give objective, precise and quantitative results. Jury evaluation is a process where buildings are evaluated subjectively without predefined selection criteria, and that criteria are weighted. The model developed in this study investigates the relationship between entropy values calculated for buildings, and the success obtained as a result of the jury evaluation. Since both design and jury evaluation are not dependent on a single factor, the relationship between single entropy values and the success of the projects cannot be questioned. Therefore, the model being developed in this study handles 5 different entropy values calculated according to 5 factors, weighted independently, and finds total entropy values. To achieve similar results to jury evaluation, a non-dominated sorting algorithm for weighting factors was utilized in relation to an inverted U graph. By finding the weighting between the entropy values, the study aims to resolve a parametric foundation for jury evaluation. Within the scope of this study, 24 municipality building projects designed for architectural project competition between 2015 and 2016 in Turkey, and which have received awards have been evaluated.
Generally, the evaluations in architectural competitions are based on quality where many criteria are involved. Additionally, many other inter-related criteria, identified by the members of the jury, emerge during jury evaluation. Hence, a great number of criteria play a role, with varying degrees of importance, in the evaluation process. The order of importance and weights of criteria (factors) in the evaluation phases are not fixed and differ according to the approaches of the jury members. The objective of this study is to investigate whether subjective means of evaluation can be associated with an objective and computable evaluation model. Entropy, an objective method used to measure disorder in buildings, offers significant potential in enhancing the comprehensibility of subjective tendencies in jury evaluation of architectural competitions. Previous studies have identified an inverted U relationship between entropy and subjective responses based on single and multiple factors. The Entropy-Based Design Evaluation Model (EBDEM), a method, analyzes the level of objectivity in jury evaluation and questions the predictability of evaluations through examining the relationship between the entropy values of projects and success outcomes. The Weighted Overall Entropy (WOE) was obtained by multiplying multiple factor entropy values with different weight coefficients with the purpose of ranking each project on an inverted U graph similar to jury results. The relationship between WOE values calculated and the ranking of the projects in the competitions were investigated. The findings within this study indicate that there are no relationships between single factor entropy values and ranking of the projects. Additionally, it was found that WOE values calculated for single-competition compared to multiple-competitions were more similar to jury evaluation results.
Genel olarak araştırmaların güvenirliği ve geçerliği yapılan çalışmaların tasarım ve uygulama aşamalarında gösterilen özenle doğrudan ilişkili olarak görülmektedir. Bu kapsamda, tüm
In this paper, we propose a VR design tool framework called DREAMSCAPE, which adopts a direct manipulation approach focusing on embody, experience, and manipulation activities in design. The framework defines a VR design process using intuitive controls without being limited by the preconceptions of conventional CAD systems. To establish and demonstrate the framework, we designed and developed a VR design tool called Dreamscape Bricks VR in Unreal Engine 4, using LEGO bricks as base components in a high-fidelity interactive design environment. We conducted user tests and administered questionnaires assessing usability, performance, and comfort. Results showed that the user experience of the tool is positive. The developed tool is expected to establish the abstract framework and provide insights into the future of VR design tools with implications on design education
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.