The foaming behavior of SiC-particulate (SiC p ) aluminum composite powder compacts containing titanium hydride blowing agent was investigated by heating to 750• C in a pre-heated furnace. Aluminum powder compacts were also prepared and foamed using similar compaction and foaming parameters in order to determine the effect of SiC p -addition on the foaming and compression behavior. The SiC p -addition (10 wt%) was found to increase the linear expansion of the Al powder compacts presumably by increasing the surface as well as the bulk viscosities. The compression tests conducted on Al and 10 and 20% SiC p foams further showed a more brittle compression behavior of SiC p /Al foams as compared with Al foams. The collapse stresses of Al and 10% SiC p /Al foams were also predicted using the equations
The effect of Al closed-cell foam filling on the quasi-static crushing behavior of an E-glass woven fabric polyester composite tube and thin-walled Al/polyester composite hybrid tube was experimentally investigated. For comparison, empty Al, empty composite and empty hybrid tubes were also tested. Empty composite and empty hybrid tubes crushed predominantly in progressive crushing mode, without applying any triggering mechanism. Foam filling was found to be ineffective in increasing the crushing loads of the composite tubes over the sum of the crushing loads of empty composite tube and foam. However, foam filling stabilized the composite progressive crushing mode. In empty hybrid tubes, the deformation mode of the inner Al tube was found to be a more complex form of the diamond mode of deformation of empty Al tube, leading to higher crushing load values than the sum of the crushing load values of empty composite tube and empty metal tube. The foam filling of hybrid tubes however resulted in axial splitting of the outer composite tube due to the resistance imposed by the foam filler to Al tube inward folding and hence it was ineffective in increasing crushing load and SAE values over those of empty hybrid tubes.
In this study, centric type diatom frustules obtained from a diatomaceous earth filter material were used as filler in an epoxy resin with a weight percentage of 15% in order to assess the possible effects on the compressive behavior at quasi-static and high strain rates. The high strain rate testing of frustule-filled and neat epoxy samples was performed in a split-Hopkinson pressure bar (SHPB) set-up and modeled using the commercial explicit finite element code LS-DYNA 970. Result has shown that 15% frustule filling of epoxy increased both modulus and yield strength values at quasi-static and high strain rates without significantly reducing the failure strain. Microscopic observations revealed two main deformation modes: the debonding of the frustules from the epoxy and crushing/fracture of the frustules. The modeling results have further confirmed the attainment of stress equilibrium in the samples in SHPB testing following the initial elastic region and showed good agreement with the experimental stress-time response and deformation sequence of the samples in high strain rate testing.
The foaming behavior of 5 wt.% Ti6Al4V (Ti64) particle (30-200 lm)-added Al powder compacts was investigated in order to assess the particle-addition effects on the foaming behavior. Al compacts without particle addition were also prepared with the same method and foamed. The expansions of Ti64 particle-added compacts were measured to be relatively low at small particle sizes and increased with increasing particle size. At highest particle size range (160-200 lm), particle-added compacts showed expansion behavior similar to that of Al compacts without particle addition, but with lower expansion values. Expansions studies on 30-45 lm size Ti64-added compacts with varying weight percentages showed that the expansion behavior of the compacts became very similar to that of Al compact when the particle content was lower than 2 wt.%. However, Ti64 addition reduced the extent of drainage. Ti64 particles and TiAl 3 particles formed during foaming increased the apparent viscosity of the liquid foam and hence reduced the flow of liquid metal from cell walls to plateau borders. The reduced foamability in the compacts with the smaller size Ti64 addition was attributed to the relatively high viscosities, due to the higher cumulative surface area of the particles and higher rate of TiAl 3 formation between liquid Al and Ti64 particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.