The increasing use of social media and information sharing has given major benefits to humanity. However, this has also given rise to a variety of challenges including the spreading and sharing of hate speech messages. Thus, to solve this emerging issue in social media sites, recent studies employed a variety of feature engineering techniques and machine learning algorithms to automatically detect the hate speech messages on different datasets. However, to the best of our knowledge, there is no study to compare the variety of feature engineering techniques and machine learning algorithms to evaluate which feature engineering technique and machine learning algorithm outperform on a standard publicly available dataset. Hence, the aim of this paper is to compare the performance of three feature engineering techniques and eight machine learning algorithms to evaluate their performance on a publicly available dataset having three distinct classes. The experimental results showed that the bigram features when used with the support vector machine algorithm best performed with 79% off overall accuracy. Our study holds practical implication and can be used as a baseline study in the area of detecting automatic hate speech messages. Moreover, the output of different comparisons will be used as state-of-art techniques to compare future researches for existing automated text classification techniques.
Software Development Methodologies (SDM) are used for every activity performed on a software product from initiation to maintenance. There are a variety of software development methodologies (waterfall, spiral and iterative) that are available to develop software products. One of the key challenges faced by the software developer is the selection of SDM in a software product. No single methodology is ideal to work effectively in all scenarios. Therefore, software product features play an important role in the SDM selection. This paper aims to explain different features, characteristics, critical practices, advantages, disadvantages of different methodologies related to the software product. We have used six models including waterfall, unified process, spiral, extreme programming, scrum, and feature-driven development. This paper also summarized the limitations and cost control factors of SDM while developing software products.
The increasing use of the internet enables users to share their opinion about what they like and dislike regarding products and services. For efficient decision making, there is a need to analyze these reviews. Sentiment analysis or opinion mining is commonly used to detect polarity (positive or negative) of reviews. But, it does not show the aspect or orientation of the text. In this study, state-of-art approaches based on supervised machine learning employed to perform three tasks on the dataset provided by SemEval. Tasks A and B are related to predicting the aspect of the restaurant’s reviews, whereas task C shows their polarity. Additionally, this study aims to compare the performance of two feature engineering techniques and five machine learning algorithms to evaluate their performance on a publicly available dataset named SemEval-2015 Task 12. The experimental results showed that the word2vec features when used with the support vector machine algorithm outperformed by giving 76%, 72% and 79% off overall accuracies for Task A, Task B, and Task C respectively. Our comparative study holds practical significance and can be used as a baseline study in the domain of aspect-based sentiment analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.