The bacterial type rhodopsins are present in all the three domains of life. In contrast to the animal type rhodopsin that performs mainly sensory functions in higher eukaryotes, the bacterial type rhodopsin could function as ion channel, pumps and as sensory proteins. The functioning of rhodopsin in higher eukaryotes requires the transport of rhodopsin from its site of synthesis to the ciliated outer segment of the photoreceptive cells. However, the trafficking of bacterial type rhodopsin from its site of synthesis to the position of action is not characterized. Here we present the first report for the existence of an IFT-interactome mediated trafficking of the bacterial type rhodopsins into eyespot and flagella of the Chlamydomonas. We show that there is a light-dependent, dynamic localization of rhodopsins between flagella and eyespot of Chlamydomonas. The involvement of IFT components in the rhodopsin trafficking was elucidated by the use of conditional IFT mutants. We found that rhodopsin can be co-immunoprecipitated with the components of IFT machinery and with other protein components required for the IFT-cargo complex formation. These findings show that light-regulated localization of rhodopsin is not restricted to animals thereby suggesting that rhodopsin trafficking is an IFT dependent ancient process.
Edited by Richard CogdellBLUF domains are flavin-based photoreceptors which receive the blue light signal and are involved in the sensory transduction. We report a short BLUF photoreceptor (SnfB) in Stenotrophomonas sp. We have investigated photodynamic properties of C terminus truncated and several mutated SnfB proteins. Deletion of the extended C-terminal residues alters the thermal recovery kinetics and also affects the integrity of the SnfB protein. Mutagenesis studies demonstrated that the conserved residues within and outside the flavinbinding pocket also regulates the photocycle properties of the protein. These studies suggest that the C-terminal residues outside the BLUF domain can tune the photodynamic properties of the BLUF protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.