Smart grids are fostering a paradigm shift in the realm of power distribution systems. Whereas traditionally different components of the power distribution system have been provided and analyzed by different teams through different lenses, smart grids require a unified and holistic approach that takes into consideration the interplay of communication reliability, energy backup, distribution automation topology, energy storage and intelligent features such as automated failure detection, isolation and restoration (FDIR) and demand response.In this paper, we present an analytical model and metrics for the survivability assessment of the distribution power grid network. The proposed metrics extend the system average interruption duration index (SAIDI), accounting for the fact that after a failure the energy demand and supply will vary over time during a multi-step recovery process. The analytical model used to compute the proposed metrics is built on top of three design principles: state space factorization, state aggregation and initial state conditioning. Using these principles, we reduce a Markov chain model with large state space cardinality to a set of much simpler models that are amenable to analytical treatment and efficient numerical solution. In the special case where demand response is not integrated with FDIR, we provide closed form solutions to the metrics of interest, such as the mean time to repair a given set of sections.We have evaluated the presented model using data from a real power distribution grid and we have found that survivability of distribution power grids can be improved by the integration of the demand response feature with automated FDIR approaches. Our empirical results indicate the importance of quantifying survivability Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.