SummaryGrowth retardation is an important breeding aim and an essential part of horticultural plant production. Here, the potential of transferring the Arabidopsis short inter- ing a widespread presence of this transcription factor. These findings are important because they suggest that transformation with the AtSHI gene could be applied to several species as a tool for growth retardation, and that this approach could substitute the use of conventional chemical growth regulation in plant production.
Reduction in the amounts of active gibberellic acids (GA) in elongating cuttings from the ornamental crop Kalanchoe blossfeldiana were pursued by genetic manipulation as an alternative to synthetic growth regulators. An alcohol inducible promoter system was used to control silencing of GA activating enzymes. Apart from affecting the stem length, abnormal levels of GA can lead to altered flowering time, lacking seed maturation and changes in morphology. The effects of down regulating a group of GA 20-oxidases were investigated in fast growing cuttings of K. blossfeldiana Poelln. cv. Molly. The transgenic plants were phenotypically indistinguishable from wild type plants until silencing was induced by low concentrations of ethanol. Treated plants were reduced in height but otherwise appeared normal; flowering was delayed but with large variations in time between the transgenic lines. These data indicate that optimisation of the ethanol treatments can enable us to produce more compact growing plants still maintaining normal flowering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.