The channel estimation techniques for OFDM systems based on pilot arrangement are investigated. The channel estimation based on comb type pilot arrangement is studied through different algorithms for both estimating channel at pilot frequencies and interpolating the channel. The estimation of channel at pilot frequencies is based on LS and LMS while the channel interpolation is done using linear interpolation, second order interpolation, low-pass interpolation, spline cubic interpolation, and time domain interpolation. Time-domain interpolation is obtained by passing to time domain through IDFT (Inverse Discrete Fourier Transform), zero padding and going back to frequency domain through DFT (Discrete Fourier Transform). In addition, the channel estimation based on block type pilot arrangement is performed by sending pilots at every sub-channel and using this estimation for a specific number of following symbols. We have also implemented decision feedback equalizer for all sub-channels followed by periodic block-type pilots. We have compared the performances of all schemes by measuring bit error rate with 16QAM, QPSK, DQPSK and BPSK as modulation schemes, and multi-path Rayleigh fading and AR based fading channels as channel models.
Advances in low-power and low-cost sensor networks have led to solutions mature enough for use in a broad range of applications varying from health monitoring to building surveillance. The development of those applications has been stimulated by the finalization of the IEEE 802.15.4 standard, which defines the medium access control (MAC) and physical layer for sensor networks. One of the MAC schemes proposed is slotted Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA), and this paper analyzes whether this scheme meets the design constraints of those low-power and low-cost sensor networks. The paper provides a detailed analytical evaluation of its performance in a star topology network, for uplink and acknowledged uplink traffic. Both saturated and unsaturated periodic traffic scenarios are considered. The form of the analysis is similar to that of Bianchi for IEEE 802.11 DCF only in the use of a per user Markov model to capture the state of each user at each moment in time. The key assumptions to enable this important simplification and the coupling of the per user Markov models are however different, as a result of the very different designs of the 802.15.4 and 802.11 carrier sensing mechanisms. The performance predicted by the analytical model is very close to that obtained by simulation. Throughput and energy consumption analysis is then performed by using the model for a range of scenarios. Some design guidelines are derived to set the 802.15.4 parameters as function of the network requirements.
Abstract-Wireless networked control systems (WNCS) are composed of spatially distributed sensors, actuators, and controllers communicating through wireless networks instead of conventional point-to-point wired connections. Due to their main benefits in the reduction of deployment and maintenance costs, large flexibility and possible enhancement of safety, WNCS are becoming a fundamental infrastructure technology for critical control systems in automotive electrical systems, avionics control systems, building management systems, and industrial automation systems. The main challenge in WNCS is to jointly design the communication and control systems considering their tight interaction to improve the control performance and the network lifetime. In this survey, we make an exhaustive review of the literature on wireless network design and optimization for WNCS. First, we discuss what we call the critical interactive variables including sampling period, message delay, message dropout, and network energy consumption. The mutual effects of these communication and control variables motivate their joint tuning. We discuss the effect of controllable wireless network parameters at all layers of the communication protocols on the probability distribution of these interactive variables. We also review the current wireless network standardization for WNCS and their corresponding methodology for adapting the network parameters. Moreover, we discuss the analysis and design of control systems taking into account the effect of the interactive variables on the control system performance. Finally, we present the state-of-the-art wireless network design and optimization for WNCS, while highlighting the tradeoff between the achievable performance and complexity of various approaches. We conclude the survey by highlighting major research issues and identifying future research directions.
Algorithms for scheduling TDMA transmissions in multi-hop networks usually determine the smallest length conflict-free assignment of slots in which each link or node is activated at least once. This is based on the assumption that there are many independent point-to-point flows in the network. In sensor networks however often data are transferred from the sensor nodes to a few central data collectors. The scheduling problem is therefore to determine the smallest length conflict-free assignment of slots during which the packets generated at each node reach their destination. The conflicting node transmissions are determined based on an interference graph, which may be different from connectivity graph due to the broadcast nature of wireless transmissions. We show that this problem is NP-complete. We first propose two centralized heuristic algorithms: one based on direct scheduling of the nodes or node-based scheduling, which is adapted from classical multi-hop scheduling algorithms for general ad hoc networks, and the other based on scheduling the levels in the routing tree before scheduling the nodes or levelbased scheduling, which is a novel scheduling algorithm for many-to-one communication in sensor networks. The performance of these algorithms depends on the distribution of the nodes across the levels. We then propose a distributed algorithm based on the distributed coloring of the nodes, that increases the delay by a factor of 10-70 over centralized algorithms for 1000 nodes. We also obtain upper bound for these schedules as a function of the total number of packets generated in the network.
Several Vehicular Ad hoc Network (VANET) studies have focused on the communication methods based on IEEE 802.11p, which forms the standard for Wireless Access for Vehicular Environments (WAVE). In the networks employing IEEE 802.11p only, the broadcast storm and disconnected network problems at high and low vehicle densities respectively degrade the delay and delivery ratio of safety message dissemination. Recently, as an alternative to the IEEE 802.11p based VANET, the usage of cellular technologies has been investigated due to their low latency and wide range communication. However, a pure cellular based VANET communication is not feasible due to the high cost of communication between the vehicles and the base stations, and high number of hand-off occurrences at the base station considering the high mobility of the vehicles. This paper proposes a hybrid architecture, namely VMaSC-LTE, combining IEEE 802.11p based multi-hop clustering and the fourth generation cellular system, Long Term Evolution (LTE), with the goal of achieving high data packet delivery ratio and low delay while keeping the usage of the cellular architecture at minimum level. In VMaSC-LTE, vehicles are clustered based on a novel approach named VMaSC: Vehicular Multi-hop algorithm for Stable Clustering. The features of VMaSC are cluster head selection using the relative mobility metric calculated as the average relative speed with respect to the neighboring vehicles, cluster connection with minimum overhead by introducing direct connection to the neighbor that is already a head or member of a cluster instead of connecting to the cluster head in multiple hops, disseminating cluster member information within periodic hello packets, reactive clustering to maintain cluster structure without excessive consumption of network resources, and efficient size and hop limited cluster merging mechanism based on the exchange of the cluster information among the cluster heads. These features decrease the number of cluster heads while increasing their stability therefore minimize the usage of the cellular architecture. From the clustered topology, elected cluster heads operate as dual-interface nodes with the functionality of IEEE 802.11p and LTE interface to link VANET to LTE network. Using various key metrics of interest including data packet delivery ratio, delay, control overhead and clustering stability, we demonstrate superior performance of the proposed architecture compared to both previously proposed hybrid architectures and alternative routing mechanisms including flooding and cluster based routing via extensive simulations in ns-3 with the vehicle mobility input from the Simulation of Urban Mobility (SUMO). The proposed architecture also allows achieving higher required reliability of the application quantified by the data packet delivery ratio at the cost of higher LTE usage determined by the number of cluster heads in the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.