This study described the thermosensitive formulations composed of poloxamer mixtures for use as drug delivery platform via mucosal route. It also characterized the poloxamer mixtures' rheological, mechanical and mucoadhesive properties. Poloxamer (Plx) 407 and Plx 188 were used alone and together for preparing the mucosal drug delivery platform. The mixtures of Plx 407 and Plx 188 in ratio of 15:15 (F5); 15:20 (F6); 20:10 (F7) existed liquid at room temperature, but gelled at physiological temperature. Flow rheometry studies and oscillatory analysis of each formulation were performed at 20 ± 0.1°C and 37 ± 0.1°C. F5 and F7 formulations exhibited typical gel-type mechanical spectra (G' > G″) after the determined frequency value at 37°C whereas F6 behaved as weakly cross-linked gel. Texture profile analysis presented that F5 and F7 showed similar mechanical properties and can be used as base for mucosal dosage form. Mucoadhesion studies indicated the difference among the formulations and the effect of the mucosal surface on mucoadhesive properties. Mucin disc, bovine vaginal and buccal mucosa were used as mucosal platform for mucoadhesion studies. It is suggested that these investigations may be usefully combined to provide a more rational basis for selecting the ratio of Plx to prepare a topical thermosensitive drug delivery system for mucosal administration.
The vagina has been studied as a suitable site for local and systemic delivery of drugs. There are a large number of vaginal medications on the market. Most of them, however, require frequent applications due to their short vaginal residence time. A prolonged vaginal residence time of formulations is therefore a key parameter for improved therapeutic efficacy. Promising approaches for prolonging the residence time base on mucoadhesion, were in-situ sol-to-gel transition and mechanical fixation. Mucoadhesive drug delivery systems can be tailored to adhere to the vaginal tissue. In-situ gelling systems offer the advantage of increased viscosity in vaginal cavity and consequently reduce outflow from the vagina. Mechanical fixation needs specially shaped drug delivery systems and reduce the frequency of administration significantly. In this review, an overview on these different strategies and systems is provided. Furthermore, the techniques to evaluate the potential of these systems for prolonged vaginal residence time are described. _______________________________________________________________________________________
The purpose of this study was to develop a suitable mucoadhesive in situ gel formulation of clotrimazole (CLO) for the treatment of vaginal candidiasis. For this aim, the mixture of poloxamer (PLX) 407 and 188 were used to prepare in situ gels. Hydroxypropyl methylcellulose (HPMC) K100M or E50 was added to in situ gels in 0.5% ratio to improve the mucoadhesive and mechanical properties of formulations and to prolong the residence time in vaginal cavity. After the preparation of mucoadhesive in situ gels; gelation temperature/time, viscosity, mechanical, mucoadhesive, syringeability, spreadibility and rheological properties, in vitro release behavior, and anticandidal activities were determined. Moreover vaginal retention of mucoadhesive in situ gels was investigated with in vivo distribution studies in rats. Based on the obtained results, it was found that gels prepared with 20% PLX 407, 10% PLX 188 and 0.5% HPMC K100M/E50 might be suitable for vaginal administration of CLO. In addition, the results of in vivo distribution studies showed that gel formulations remained on the vaginal mucosa even 24 h after application. In conclusion, the mucoadhesive in situ gels of CLO would be alternative candidate for treatment of vaginal candidiasis since it has suitable gel properties with good vaginal retention.
This study aimed to develop a suitable buccal mucoadhesive nanoparticle (NP) formulation containing fluconazole for the local treatment of oral candidiasis. The suitability of the prepared formulations was assessed by means of particle size (PS), polydispersity index, and zeta potential measurements, morphology analysis, mucoadhesion studies, drug entrapment efficiency (EE), in vitro drug release, and stability studies. Based on the optimum NP formulation, ex vivo drug diffusion and in vitro cytotoxicity studies were performed. Besides, evaluation of the antifungal effect of the optimum formulation was evaluated using agar diffusion method, fungicidal activity-related in vitro release study, and time-dependent fungicidal activity. The effect of the optimum NP formulation on the healing of oral candidiasis was investigated in an animal model, which was employed for the first time in this study. The zeta potential, mucoadhesion, and in vitro drug release studies of various NP formulations revealed that chitosan-coated NP formulation containing EUDRAGIT ® RS 2.5% had superior properties than other formulations. Concerning the stability study of the selected formulation, the formulation was found to be stable for 6 months. During the ex vivo drug diffusion study, no drug was found in receptor phase, and this is an indication of local effect. The in vitro antifungal activity studies showed the in vitro efficacy of the NP against Candida albicans for an extended period. Also, the formulation had no cytotoxic effect at the tested concentration. For the in vivo experiments, infected rabbits were successfully treated with local administration of the optimum NP formulation once a day. This study has shown that the mucoadhesive NP formulation containing fluconazole is a promising candidate with once-a-day application for the local treatment of oral candidiasis.
Vaginal yeast infections are among the most common reasons for women seeking medical care; it has been estimated that 70-75 % of women have an episode of Candida vaginitis at least once during their lifetime (1). Local administration of antimicrobial agents has been favored in the treatment of vaginitis because of the numerous side effects of systemically applied drugs. Vaginal dosage forms used for this purpose include solutions, gels, creams, ointments, foams, pessaries, tablets and vaginal inserts (1). To achieve a desirable therapeutic effect, vaginal delivery systems need to have the ability to spread onto the vaginal mucosa surface and guarantee an intimate and prolonged contact at the site of application (2). Therefore, localized mucoadhesive dosage forms The aim of the present study was to evaluate chitosan as a vaginal mucoadhesive gel base for econazole nitrate and miconazole nitrate. To this aim, different types of chitosan with different molecular masses and viscosity properties [low molecular mass chitosan (viscosity: 20,000 mPa s), medium molecular mass chitosan (viscosity: 200,000 mPa s), high molecular mass chitosan (viscosity: 800,000 mPa s)] have been used. First, rheological studies were conducted on chitosan gels. Mechanical, syringeability and mucoadhesive properties of chitosan gels were determined. Release profiles of econazole nitrate and miconazole nitrate from chitosan gels were obtained and evaluated kinetically. In addition, anticandidal activities of formulations were determined. Finally, vaginal retention of chitosan gels in rats was evaluated by in vivo distribution studies. Based on the results, it can be concluded that gels prepared with medium molecular mass chitosan might be effectively used for different antifungal agents in the treatment of vaginal candidiosis, since it has high mucoadhesiveness, suitable mechanical and release properties with good vaginal retention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.