Dyes are an important class of organic pollutants and well known for their hazardous effects to the aquatic life in general and the human beings in particular. In order to reduce the negative effects of dye contaminated wastewater to the humans and the environment, the wastewater must be treated carefully before discharge into main streams. Advances in science and technology have led to the evolution of several techniques for the removal of dyes from industrial and domestic effluents. In this review, the more recent methods for the removal of dyes from water and wastewater have been discussed. Wastewater treatment techniques such as adsorption, oxidation, flocculation-coagulation, membrane filtration and biological treatment have been highlighted. Besides, efforts were made to review all the available techniques and recently published studies from 2010-2014. Furthermore, performances and special features of these technologies have been summarised. Advantages and limitations of each technique are also presented. Literature survey reveals that chemical oxidation, adsorption, and biological treatments have been the most frequently investigated techniques for dye removal over the past few years.
Nanotechnology is an innovative area of science that includes the design, characterization, production, and application of materials, devices and systems by controlling shape and size at the nanometer scale (1–100 nm). Nanotechnology incorporation in cosmetic formulation is considered as the hottest and emerging technology available. Cosmetic manufacturers use nanoscale size ingredients to provide better UV protection, deeper skin penetration, long-lasting effects, increased color, finish quality, and many more. Micellar nanoparticles is one of the latest field applied in cosmetic products that becoming trending and widely commercialized in local and international markets. The ability of nanoemulsion system to form small micellar nanoparticles size with high surface area allowing to effectiveness of bioactive component transport onto the skin. Oil in water nanoemulsion is playing a major role as effective formulation in cosmetics such as make-up remover, facial cleanser, anti-aging lotion, sun-screens, and other water-based cosmetic formulations. The objective of this review is to critically discuss the properties, advantageous, and mechanism of micellar nanoparticles formation in nanoemulsion system. Therefore, present article introduce and discuss the specific benefits of nanoemulsion system in forming micellar nanoparticles for cosmetic formulation which become major factors for further development of micellar-based cosmetic segments.
Nowadays, microbially induced calcium carbonate precipitation (MICP) has received great attention for its potential in construction and geotechnical applications. This technique has been used in biocementation of sand, consolidation of soil, production of self-healing concrete or mortar, and removal of heavy metal ions from water. The products of MICP often have enhanced strength, durability, and self-healing ability. Utilization of the MICP technique can also increase sustainability, especially in the construction industry where a huge portion of the materials used is not sustainable. The presence of bacteria is essential for MICP to occur. Bacteria promote the conversion of suitable compounds into carbonate ions, change the microenvironment to favor precipitation of calcium carbonate, and act as precipitation sites for calcium carbonate crystals. Many bacteria have been discovered and tested for MICP potential. This paper reviews the bacteria used for MICP in some of the most recent studies. Bacteria that can cause MICP include ureolytic bacteria, non-ureolytic bacteria, cyanobacteria, nitrate reducing bacteria, and sulfate reducing bacteria. The most studied bacterium for MICP over the years is Sporosarcina pasteurii. Other bacteria from Bacillus species are also frequently investigated. Several factors that affect MICP performance are bacterial strain, bacterial concentration, nutrient concentration, calcium source concentration, addition of other substances, and methods to distribute bacteria. Several suggestions for future studies such as CO2 sequestration through MICP, cost reduction by using plant or animal wastes as media, and genetic modification of bacteria to enhance MICP have been put forward.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.